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Introduction

scRNA-Seq is the ‘latest and greatest’ transcriptomic technique

Previously all our analysis involved multiple cells per sample
® Now commonly known as bulk RNA-Seq

Large cell numbers during tissue extraction, library preparation etc.
® Most experiments have highly heterogeneous cell populations, e.g.
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Introduction

scRNA-Seq is the ‘latest and greatest’ transcriptomic technique

Previously all our analysis involved multiple cells per sample
® Now commonly known as bulk RNA-Seq

Large cell numbers during tissue extraction, library preparation etc.
® Most experiments have highly heterogeneous cell populations, e.g.

® Different regions of the brain contain highly specialised cells
® The immune system is highly complex
® Cancer samples have both infiltrating and tumour cells
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Introduction

® |f a gene is increased 2-fold in expression:
® |[s this 2-fold in 100% of cells?
® Oris it 4-fold in 50% of cells?

® Or is it down 2-fold in 25% and up 8-fold in 25% and unchanged in 50%7?
® Changes in gene expression can be highly specific to individual cell-types
® Determining heterogeneity of our bulk samples is challenging
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Introduction

® The most intuitive solution is to obtain RNA from each cell and sequence

® Reality is much trickier than this
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Introduction

The most intuitive solution is to obtain RNA from each cell and sequence

Reality is much trickier than this

How do we characterise which cell is which cell-type?

What do we even mean by the term ‘cell-type’?
® How do we capture as many transcripts from each cell as we can?
® Missing values are a huge issue in scRNA-seq

How do we compare within the same cell-types between experimental groups?

® e.g. treated and untreated cell types may not be easily assigned to the same
cluster/cell-type
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Summarised scRNA Workflow
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Motivation

Bulk RNA-Seq is primarily focussed on differentially expressed (DE) genes

scRNA-Seq focusses on identifying cell-types within a sample

® How do we discriminate between different cell-types and different cell-states?

What is the most intelligent approach for identifying DE genes

® [s it between clusters/cell-types = marker genes
® [s it between the same cell-types under differing treatments/cell-states?
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scRNA Protocols
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Isolating Individual Cells

Early protocols used a dilution series or manual isolation with a microscope
(micromanipulation)

Laser Capture Micro-dissection (LCM)
Fluorescence-Activated Cell Sorting (FACS)

® [abelled antibodies to specific surface markers
® MACS is a magnetic-based approach

Microfluidics/Droplet-based approaches
Multiple rounds of splitting and pooling
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Protocol Timeline
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Protocol Timeline

Data Analysis
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IFC Capture

Integrated Fluidic Circuit (IFC) chips
® Most common is the Fluidigm C1

Deliver tiny volumes into ‘reaction chambers’

Early chips had 96 chambers = multiple chips / experiment

Recent chips handle ~800 cells
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Protocol Timeline

Data Analysis
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Droplet-based Approaches

Droplet Cell lysis Hybridization
@ and reverse
@ transcription
Barcoded
beads

THE UNIVERSITY
Taken from S. S. Potter. “Single-cell RNA sequencing for the study of development, physiology and disease”. In: Nat Rev Nephrol 14.8 (AygADELAIDE

2018), pp. 479-492
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Droplet-based Approaches

@
e

Droplet Cell lysis Hybridization
@ and reverse
@ transcription
Barcoded
beads
Flow rate is modelled as a Poisson process to minimise doublets
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Taken from Potter, “Single-cell RNA sequencing for the study of development, physiology and disease”
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Sequencing Overview

Individual cells are isolated = how do we sequence?
Need a method to track which reads come from which cell
Sequencing is performed on a standard lllumina machine, i.e. multiplexed
Each cell is essentially an individual library prep
® Barcodes / UMIs are used for cell / molecule identification
For bulk RNA-Seq we need 0.1 — 1ug of RNA (10° — 10%pg)
® An individual cell contains 1-50pg RNA

5)
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SMART!-Seq (C1)

1. All reagents are in the IFC reaction chambers

2. Cells are lysed

3. polyA RNA reverse transcribed into full length cDNA
® oligo(dT) priming and template switching

4. 12-18 PCR cycles

5. cDNA fragmentation and Adapter ligation

THE UNIVERSITY
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SMART-Seq (C1)

Data Analysis
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Droplet-based Methods

® Popularised by the 10X Genomics Chromium System
® Each gel bead contains the reagents
® 30nt poly(dT) primer with 16nt 10x Barcode, 12nt UMI?

® |llumina primers and restriction enzymes added later
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10X Chromium Protocol
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Inside individual GEMs
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10X Chromium Protocol
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10X Chromium Protocol

Read 1:28
10xBC+UMI Sample
—\

Index
e
P5 TruSeqRead1 10x  UMI Poly(dT)VN < TruSeqRead 2

code Read 2:91
Insert

@

® Only R2 contains the sequence information

® Only the 3’ end is sequenced

Data Analysis
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e Each template RNA should have one UMI = PCR duplicates can be identified
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Other Variations

CITE-Seq3

® Prior to sorting cells can be ‘labelled” with antibody-oligo complexes
® QOligos allow additional recognition of surface proteins

® On cell lysis these oligos are amplified along with RNA

THE UNIVERSITY
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Other Variations

SPLIT-Seq*

Cells are split into pools and fixed

One barcode/pool

Multiple rounds of pooling and barcoding

All amplification is in situ

Able to be applied to single nuclei

THE UNIVERSITY
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Comparison of Methods

Protocol | C1 (SMART-Seq) SMART-Seq2 10X Chromium SPLIT-Seq

Platform Microfluidics Plate-based Droplet
Transcript | Full-length Full-length 3'-end
Cells 102 — 103 102 — 103 103 — 10
Reads/Cell | 10° 10° 10* — 10°

Plate-based
3'-end

103 —10°
104

5)
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Data sourced from Haque et al., “A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications”



scRNA Protocols
000000000000000e00

Comparison of Methods

Protocol | C1 (SMART-Seq) SMART-Seq2 10X Chromium SPLIT-Seq

Platform Microfluidics Plate-based Droplet Plate-based
Transcript | Full-length Full-length 3'-end 3'-end
Cells 10% — 10° 10% — 103 103 — 10* 103 — 10°
Reads/Cell | 10° 10° 10* — 10° 10*

Saturation for detection of expressed genes occurs around 5 x 10° reads/cell

5)
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Data sourced from Haque et al., “A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications”
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Protocol Timeline

Data Analysis
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Data taken from Svensson, Vento-Tormo, and Teichmann, “Exponential scaling of single-cell RNA-seq in the past decade”
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Technical Challenges

How to detect intact/viable cells, free RNA etc
How to ensure only single cells captured, i.e. no doublets

Unbiased of sampling of RNA molecules (e.g. PCR impacts) and individual cells

® large numbers of zero counts for expressed genes
® | ack of evidence for expression # evidence for lack of expression

Efficiency of cell capture (~50% for 10X)
How to deal with batch effects
® Cells from each treatment group are always prepared separately

5)
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Data Analysis
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Automated Pipelines

Most pre-processing for 10X data is performed using CellRanger

Handles demultiplexing, alignment (STAR) and quantification (using UMIs)
® Full-length transcript methods can utilise kallisto/salmon

We end up with a feature-barcode matrix

® A barcode represents an individual cell (or a set of reactions)
® A feature is commonly thought of as a gene in scRNA-Seq
® Other single-cell approaches (e.g. scATAC-Seq) are not gene focussed

Similar to counts from bulk RNA-Seq but with many more columns (cells)

)
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Filtering

® We need to keep the high quality cells and discard the dubious cells, such as:

1. Low/High read numbers (library sizes)

2. Low feature/gene numbers
3. High proportions of mitochondrial RNA = cells broken prior to lysis
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Filtering

® We need to keep the high quality cells and discard the dubious cells, such as:

1. Low/High read numbers (library sizes)

2. Low feature/gene numbers
3. High proportions of mitochondrial RNA = cells broken prior to lysis

® Also need a method for considering each gene as detectable (Average Counts
> 1)

® Treatment Groups and Cell-Types are less easily defined a priori

)

THE UNIVERSITY

ADELAIDE



Data Analysis
000@0000000000000

Normalisation

Cell-specific offsets are once again calculated

® Each cell is it's own source of variability
Methods such as TMM are heavily influenced by the large numbers of zero counts
Pooling and deconvolution:

1. Perform rudimentary clustering of cells
2. Normalise across all clusters (TMM assumes most genes are not DE)
3. Deconvolute cells and normalisation factors

Calculate log-transformed, normalised expression values (logcounts)

)
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Clustering

A key process is grouping similar cells with each other = identifying cell-types
To speed this up, we often choose the most highly variable genes (HVGs)

Perform dimensional reduction:

® PCA is the preferred linear approach, with non-linear approaches being:
® tSNE (t-Distributed Stochastic Neighbour Embedding)
® UMAP (Uniform Manifold Approximation and Projection)

Both tSNE and UMAP are highly sensitive to parameter choice
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Clustering

SPARCL1

tSNE_2

SNE_2
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Images from https://scrnaseq.readthedocs.io/en/latest/ecellranger.html
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Clustering

Formation of clusters allows for identification of cell-types
Is there a “ground truth”?

Different approaches will provide different results
Different parameter settings with provide different results

Each approach could be considered an alternate view-point on the data
® Some viewpoints reveal particular information
® Alternate viewpoints reveal different insights

These are not necessarily contradictory

Clusters are essentially artificial constructs used to represent one or more
biological features

)
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Graph-Based Clustering

Common approaches are k-nearest neighbours / shared neighbour weighting
Relatively efficient computationally

Uses the reduced dimensional data not gene expression
® Commonly PCA with some optimising for the number of retained PCs

Represents the similarity between cells as an “edge weight”
No assumption about ‘shape’ of any clustering

Clusters are identified using Community Detection

5)
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Visualising Clusters: tSNE
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Image taken from Orchestrating Single-Cell Analysis with Bioconductor
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Visualising Clusters: Force-Directed Layout
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Image taken from Orchestrating Single-Cell Analysis with Bioconductor
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Graph-Based Clustering

® Forcing a minimum number of neighbours minimises small clusters
® Choosing large k gives fewer larger clusters

e Clustering is performed in high-dimensions (e.g. using 10PCs) but visualised in 2

® |s essentially an exploratory process

THE UNIVERSITY
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Graph-Based Clustering

Cluster
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Image from Junwei Wang, Masters Thesis, 2019
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Alternative Clustering Methods

® We can use k-Means = assumes k multi-dimensional spheres

® k explicitly sets the number of clusters

5
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Alternative Clustering Methods
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Images taken from Orchestrating Single-Cell Analysis with Bioconductor
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Alternative Clustering Methods
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Images taken from Orchestrating Single-Cell Analysis with Bioconductor
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Marker Selection

An alternative perspective to differential expression = marker gene selection
We find which genes define one or more clusters = identify known/unknown
cell types

Can also use known markers from CITE-Seq to identify cell-types

Each cluster needs to be compared to all other clusters

® Can use t-tests, limma/voom, edgeR
® For unique markers, choose the maximal p-value across all comparisons

)
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Marker Selection
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Marker Selection

® Often needs close discussion with biologist
® Relies on their expertise and knowledge of existing markers

® Still much scope for identifying new marker genes and cell-types

THE UNIVERSITY
ADELAIDE



	Background
	scRNA Protocols
	Data Analysis

