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Introduction

• scRNA-Seq is the ‘latest and greatest’ transcriptomic technique
• Previously all our analysis involved multiple cells per sample

• Now commonly known as bulk RNA-Seq

• Large cell numbers during tissue extraction, library preparation etc.
• Most experiments have highly heterogeneous cell populations, e.g.

• Different regions of the brain contain highly specialised cells
• The immune system is highly complex
• Cancer samples have both infiltrating and tumour cells
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Introduction

• If a gene is increased 2-fold in expression:
• Is this 2-fold in 100% of cells?
• Or is it 4-fold in 50% of cells?
• Or is it down 2-fold in 25% and up 8-fold in 25% and unchanged in 50%?

• Changes in gene expression can be highly specific to individual cell-types

• Determining heterogeneity of our bulk samples is challenging
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Introduction

• The most intuitive solution is to obtain RNA from each cell and sequence

• Reality is much trickier than this

• How do we characterise which cell is which cell-type?

• What do we even mean by the term ‘cell-type’?
• How do we capture as many transcripts from each cell as we can?

• Missing values are a huge issue in scRNA-seq

• How do we compare within the same cell-types between experimental groups?
• e.g. treated and untreated cell types may not be easily assigned to the same

cluster/cell-type
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Summarised scRNA Workflow

Taken from A. Haque et al. “A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications”. In: Genome Med
9.1 (Aug. 2017), p. 75
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Motivation

• Bulk RNA-Seq is primarily focussed on differentially expressed (DE) genes

• scRNA-Seq focusses on identifying cell-types within a sample

• How do we discriminate between different cell-types and different cell-states?

• What is the most intelligent approach for identifying DE genes

• Is it between clusters/cell-types =⇒ marker genes
• Is it between the same cell-types under differing treatments/cell-states?
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Isolating Individual Cells

• Early protocols used a dilution series or manual isolation with a microscope
(micromanipulation)

• Laser Capture Micro-dissection (LCM)
• Fluorescence-Activated Cell Sorting (FACS)

• Labelled antibodies to specific surface markers
• MACS is a magnetic-based approach

• Microfluidics/Droplet-based approaches

• Multiple rounds of splitting and pooling
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Protocol Timeline

Taken from V. Svensson, R. Vento-Tormo, and S. A. Teichmann. “Exponential scaling of single-cell RNA-seq in the past decade”. In: Nat
Protoc 13.4 (Apr. 2018), pp. 599–604
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Protocol Timeline
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IFC Capture

• Integrated Fluidic Circuit (IFC) chips
• Most common is the Fluidigm C1

• Deliver tiny volumes into ‘reaction chambers’

• Early chips had 96 chambers =⇒ multiple chips / experiment

• Recent chips handle ∼800 cells
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Protocol Timeline
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Droplet-based Approaches

Flow rate is modelled as a Poisson process to minimise doublets

Taken from S. S. Potter. “Single-cell RNA sequencing for the study of development, physiology and disease”. In: Nat Rev Nephrol 14.8 (Aug.
2018), pp. 479–492
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Sequencing Overview

• Individual cells are isolated =⇒ how do we sequence?

• Need a method to track which reads come from which cell

• Sequencing is performed on a standard Illumina machine, i.e. multiplexed
• Each cell is essentially an individual library prep

• Barcodes / UMIs are used for cell / molecule identification

• For bulk RNA-Seq we need 0.1− 1µg of RNA (105 − 106pg)
• An individual cell contains 1-50pg RNA
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SMART1-Seq (C1)

1. All reagents are in the IFC reaction chambers

2. Cells are lysed

3. polyA RNA reverse transcribed into full length cDNA
• oligo(dT) priming and template switching

4. 12-18 PCR cycles

5. cDNA fragmentation and Adapter ligation

1SMART = Switching Mechanism at 5’ End of RNA Template
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SMART-Seq (C1)

Image from S. Picelli. “Single-cell RNA-sequencing: The future of genome biology is now”. In: RNA Biol 14.5 (May 2017), pp. 637–650
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Droplet-based Methods

• Popularised by the 10X Genomics Chromium System
• Each gel bead contains the reagents

• 30nt poly(dT) primer with 16nt 10x Barcode, 12nt UMI2

• Illumina primers and restriction enzymes added later

2Unique Molecular Identifier
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10X Chromium Protocol

Barcoded, full-length cDNA is pooled then
PCR amplified

Images from 10X Genomics CG000204 ChromiumNextGEMSingleCell3 v3.1 Rev D.pdf

https://assets.ctfassets.net/an68im79xiti/1eX2FPdpeCgnCJtw4fj9Hx/7cb84edaa9eca04b607f9193162994de/CG000204_ChromiumNextGEMSingleCell3_v3.1_Rev_D.pdf
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10X Chromium Protocol

Barcoded, full-length cDNA is pooled then
PCR amplified

Images from 10X Genomics CG000204 ChromiumNextGEMSingleCell3 v3.1 Rev D.pdf
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10X Chromium Protocol

• Only R2 contains the sequence information

• Only the 3’ end is sequenced

• Each template RNA should have one UMI =⇒ PCR duplicates can be identified
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Other Variations

CITE-Seq3

• Prior to sorting cells can be ‘labelled’ with antibody-oligo complexes

• Oligos allow additional recognition of surface proteins

• On cell lysis these oligos are amplified along with RNA

3Cellular Indexing of Transcriptomes and Epitopes by sequencing
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Other Variations

SPLIT-Seq4

• Cells are split into pools and fixed

• One barcode/pool

• Multiple rounds of pooling and barcoding

• All amplification is in situ

• Able to be applied to single nuclei

4Split-Pool Ligation-based Transcriptome Sequencing
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Comparison of Methods

Protocol C1 (SMART-Seq) SMART-Seq2 10X Chromium SPLIT-Seq

Platform Microfluidics Plate-based Droplet Plate-based
Transcript Full-length Full-length 3’-end 3’-end
Cells 102 − 103 102 − 103 103 − 104 103 − 105

Reads/Cell 106 106 104 − 105 104

Saturation for detection of expressed genes occurs around 5× 105 reads/cell

Data sourced from Haque et al., “A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications”
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Technical Challenges

• How to detect intact/viable cells, free RNA etc

• How to ensure only single cells captured, i.e. no doublets
• Unbiased of sampling of RNA molecules (e.g. PCR impacts) and individual cells

• Large numbers of zero counts for expressed genes
• Lack of evidence for expression 6= evidence for lack of expression

• Efficiency of cell capture (∼50% for 10X)
• How to deal with batch effects

• Cells from each treatment group are always prepared separately
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Data Analysis
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Automated Pipelines

• Most pre-processing for 10X data is performed using CellRanger

• Handles demultiplexing, alignment (STAR) and quantification (using UMIs)
• Full-length transcript methods can utilise kallisto/salmon

• We end up with a feature-barcode matrix
• A barcode represents an individual cell (or a set of reactions)
• A feature is commonly thought of as a gene in scRNA-Seq
• Other single-cell approaches (e.g. scATAC-Seq) are not gene focussed

• Similar to counts from bulk RNA-Seq but with many more columns (cells)
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Filtering

• We need to keep the high quality cells and discard the dubious cells, such as:

1. Low/High read numbers (library sizes)
2. Low feature/gene numbers
3. High proportions of mitochondrial RNA =⇒ cells broken prior to lysis

• Also need a method for considering each gene as detectable (Average Counts
> 1)
• Treatment Groups and Cell-Types are less easily defined a priori
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Normalisation

• Cell-specific offsets are once again calculated
• Each cell is it’s own source of variability

• Methods such as TMM are heavily influenced by the large numbers of zero counts
• Pooling and deconvolution:

1. Perform rudimentary clustering of cells
2. Normalise across all clusters (TMM assumes most genes are not DE)
3. Deconvolute cells and normalisation factors

• Calculate log-transformed, normalised expression values (logcounts)
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Clustering

• A key process is grouping similar cells with each other =⇒ identifying cell-types

• To speed this up, we often choose the most highly variable genes (HVGs)
• Perform dimensional reduction:

• PCA is the preferred linear approach, with non-linear approaches being:
• tSNE (t-Distributed Stochastic Neighbour Embedding)
• UMAP (Uniform Manifold Approximation and Projection)

• Both tSNE and UMAP are highly sensitive to parameter choice
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Clustering

Images from https://scrnaseq.readthedocs.io/en/latest/ecellranger.html

https://scrnaseq.readthedocs.io/en/latest/ecellranger.html
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Clustering

• Formation of clusters allows for identification of cell-types

• Is there a “ground truth”?

• Different approaches will provide different results

• Different parameter settings with provide different results
• Each approach could be considered an alternate view-point on the data

• Some viewpoints reveal particular information
• Alternate viewpoints reveal different insights

• These are not necessarily contradictory

• Clusters are essentially artificial constructs used to represent one or more
biological features
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Graph-Based Clustering

• Common approaches are k-nearest neighbours / shared neighbour weighting

• Relatively efficient computationally
• Uses the reduced dimensional data not gene expression

• Commonly PCA with some optimising for the number of retained PCs

• Represents the similarity between cells as an “edge weight”

• No assumption about ‘shape’ of any clustering

• Clusters are identified using Community Detection
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Visualising Clusters: tSNE

Image taken from Orchestrating Single-Cell Analysis with Bioconductor

https://osca.bioconductor.org/
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Visualising Clusters: Force-Directed Layout

Image taken from Orchestrating Single-Cell Analysis with Bioconductor

https://osca.bioconductor.org/
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Graph-Based Clustering

• Forcing a minimum number of neighbours minimises small clusters
• Choosing large k gives fewer larger clusters

• Clustering is performed in high-dimensions (e.g. using 10PCs) but visualised in 2

• Is essentially an exploratory process
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Graph-Based Clustering

Image from Junwei Wang, Masters Thesis, 2019
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Alternative Clustering Methods

• We can use k-Means =⇒ assumes k multi-dimensional spheres

• k explicitly sets the number of clusters
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Alternative Clustering Methods

Setting k = 10

Setting k = 20

Images taken from Orchestrating Single-Cell Analysis with Bioconductor

https://osca.bioconductor.org/
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Alternative Clustering Methods

Setting k = 10 Setting k = 20

Images taken from Orchestrating Single-Cell Analysis with Bioconductor

https://osca.bioconductor.org/
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Marker Selection

• An alternative perspective to differential expression =⇒ marker gene selection

• We find which genes define one or more clusters =⇒ identify known/unknown
cell types

• Can also use known markers from CITE-Seq to identify cell-types
• Each cluster needs to be compared to all other clusters

• Can use t-tests, limma/voom, edgeR
• For unique markers, choose the maximal p-value across all comparisons
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Marker Selection

Image modified from Junwei Wang, Masters Thesis, 2019
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Marker Selection

• Often needs close discussion with biologist

• Relies on their expertise and knowledge of existing markers

• Still much scope for identifying new marker genes and cell-types
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