

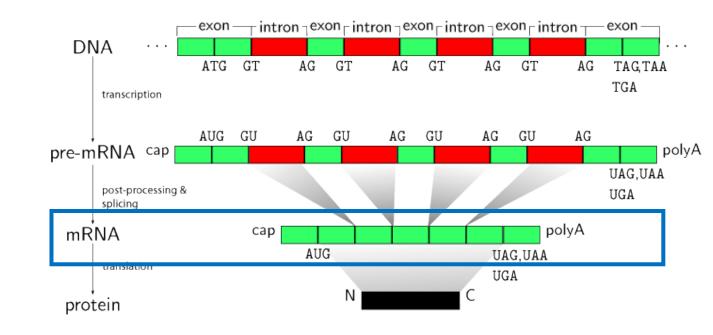
Transcriptome Assembly

BIOINF 3005 /7160: Transcriptomics Applications

Dr Terry Bertozzi South Australian Museum University of Adelaide

June 1, 2020

Outline

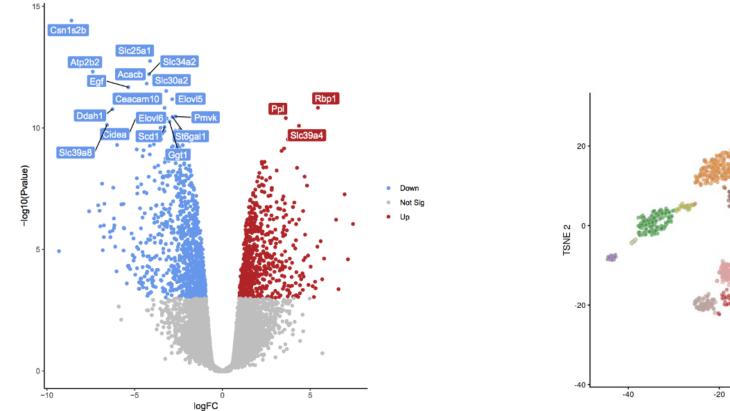

• Transcriptome recap

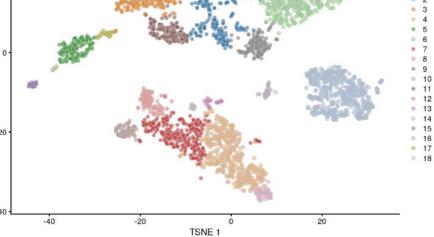
Ę

- Genome vs Transcriptome assembly
- Transcriptome assembly
 - Short read assembly
 - Long read methods
 - Guided assembly
- Transcriptome evaluation

Transcriptome

- The set of all RNA transcripts, including coding and non-coding, in an individual or a population of cells.
- mRNA
- IncRNA
- tRNA
- rRNA
- Small RNAs (e.g. miRNA, siRNA)
- Typically avoid rRNA
 - >80% total RNA
 - ~5% mRNA




Transcriptome

• Differential expression

Ļ

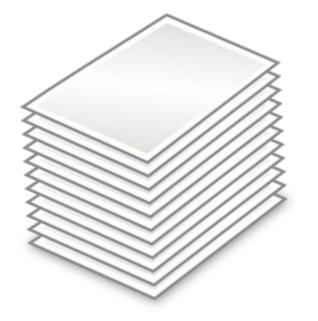
• Single cell clustering

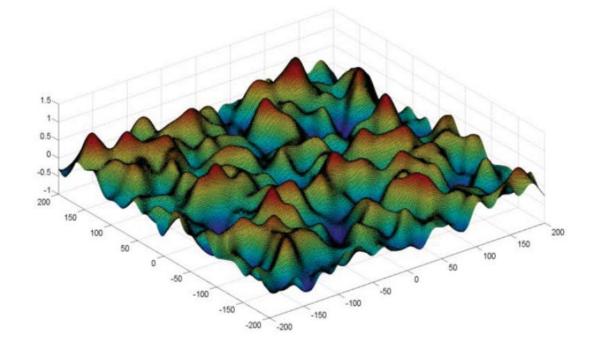
labe

16

18

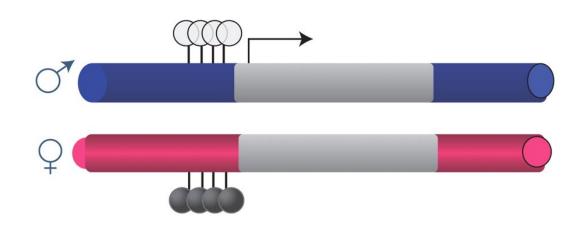
Image from https://galaxyproject.github.io

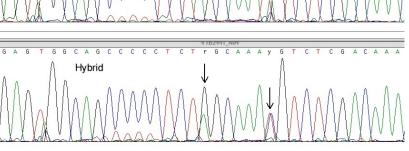

Genome vs Transcriptome assembly


Genome

• Uniform coverage

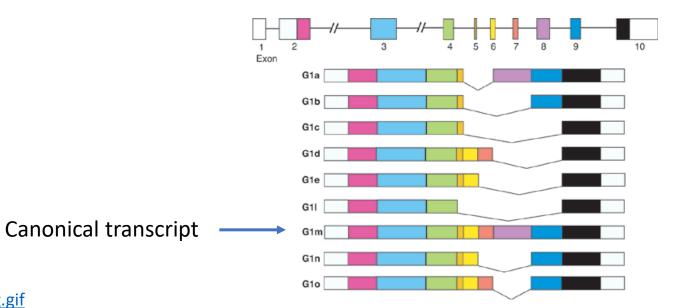
Transcriptome


• Exponentially distributed coverage


Uneven coverage

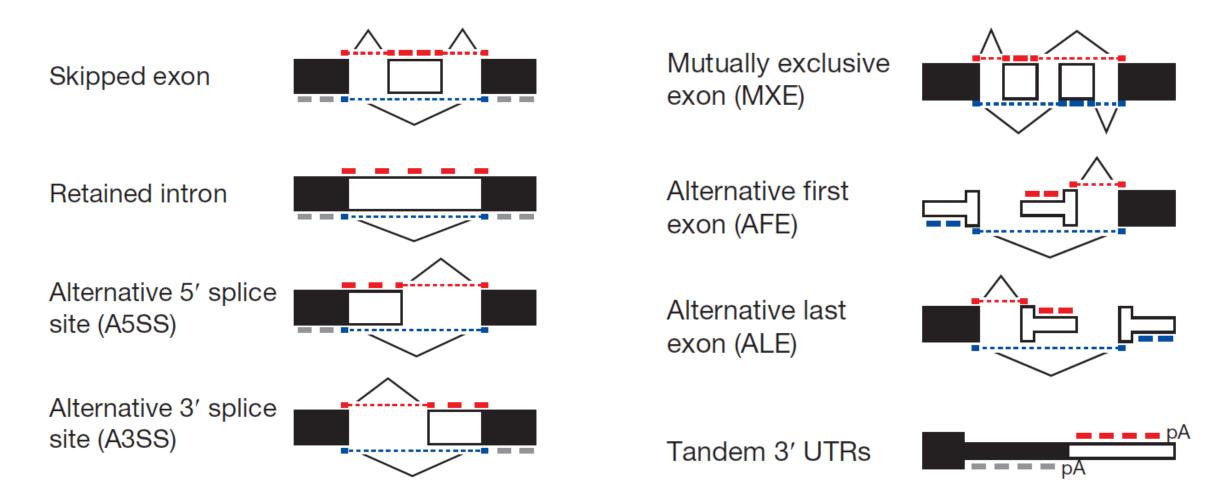
- Cell/tissue compartmentalisation/function
 - Rare transcripts
- Allele specific expression
 - X-inactivation (Xist: X-inactive specific transcript)
 - Full / partial imprinting

Bartolomei 2011 Cold Spring Harbor Perspectives in Biology


Genome vs Transcriptome assembly

Genome

- Uniform coverage
- Two contigs / locus


Transcriptome

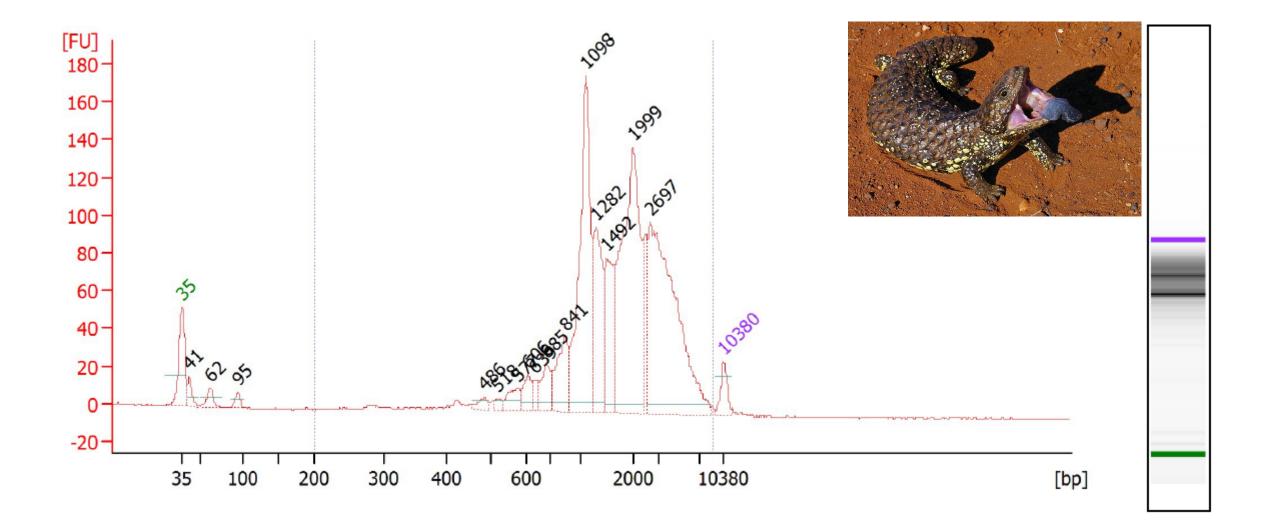
- Exponentially distributed coverage
- Multiple contigs / locus
 - isoforms

Alternate Splicing

Wang et al 2008 Nature

Genome vs Transcriptome assembly

Genome


- Uniform coverage
- Single contig / locus
- Assemble small number of large Mb-length contigs

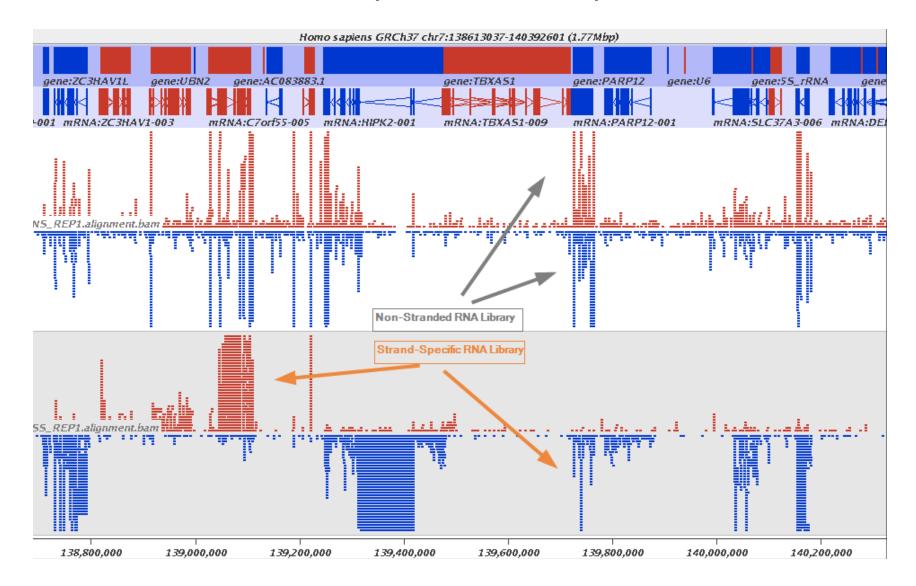
Transcriptome

- Exponentially distributed coverage
- Multiple contigs / locus
- Assemble thousands of Kb-length transcripts

Transcript distribution

Ļ

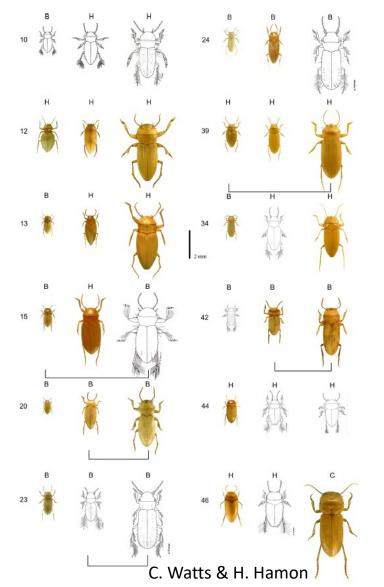
Genome vs Transcriptome assembly


Genome

- Uniform coverage
- Single contig / locus
- Assemble small number of large Mb-length contigs
- Double stranded

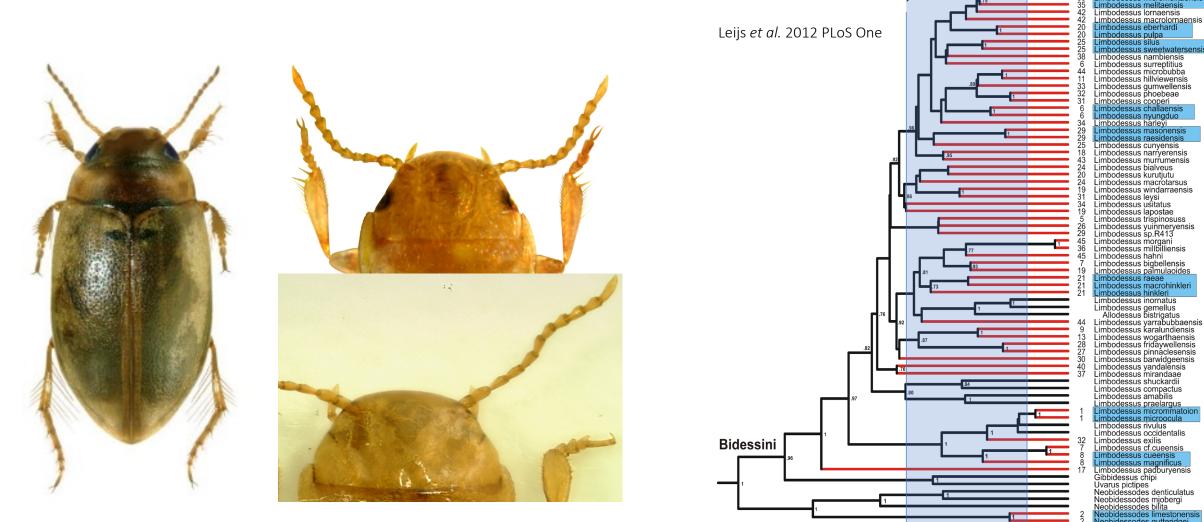
Transcriptome

- Exponentially distributed coverage
- Multiple contigs / locus
- Assemble thousands of Kb-length transcripts
- Strand specific


Strand specific expression

Assembly tools

Phototransduction in blind beetles



Ę

Phototransduction in blind beetles

imbodessus micromelitaen:

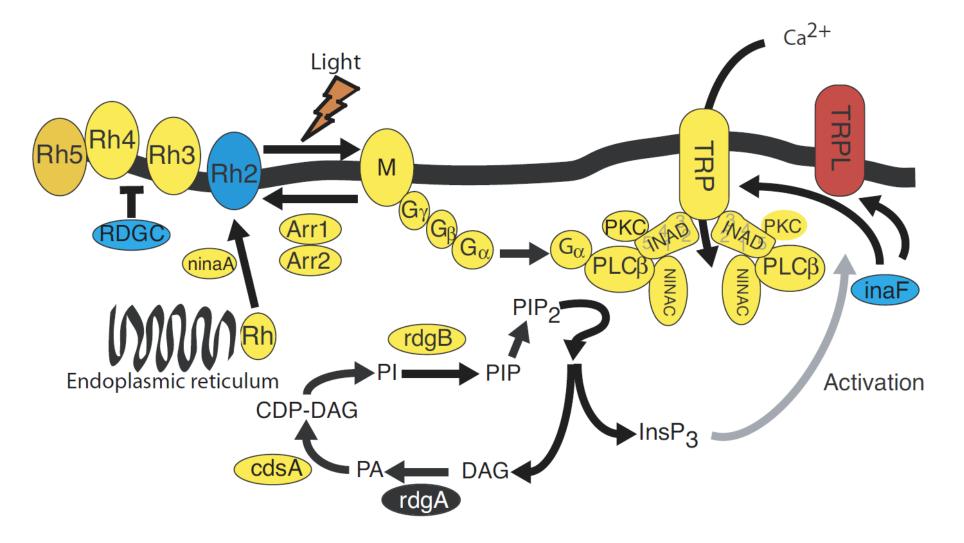
15

Mva

10

5

0

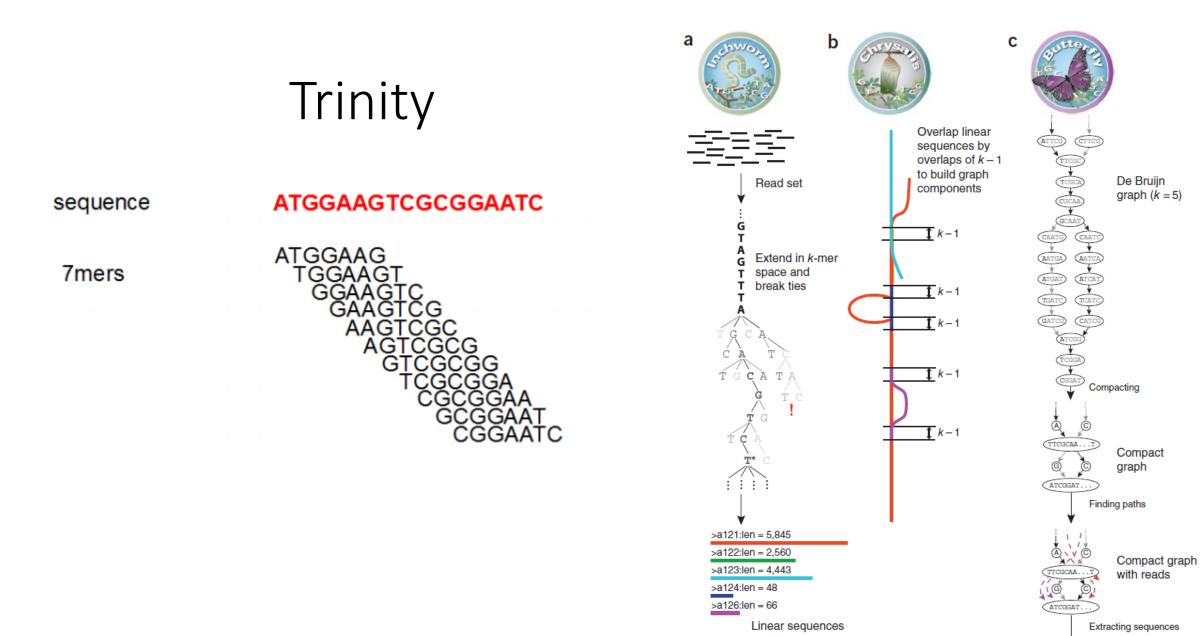

Surface

Ę

Subterranean

Phototransduction in blind beetles

Ē

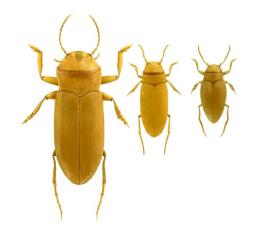


Short Read Assembly

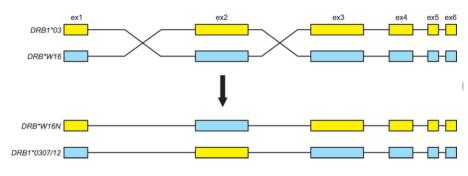
- Trinity Assembler & post assembly tools
- External required software (trinity):
 - Jellyfish (k-mer counting), samtools, Bowtie2, kallisto, salmon
- External required software (post-assembly):
 - R with Bioconductor
 - BLAST, Picard, GATK4, Hisat2, STAR
 - RSEM, express
 - Transdecoder

....CTTCGCAA....TGATCGGAT.... Transcripts

Trinity


- Output is a bunch of files and folders
- trinity.fasta contains the assembled transcripts

Transcript ID


UV Opsin

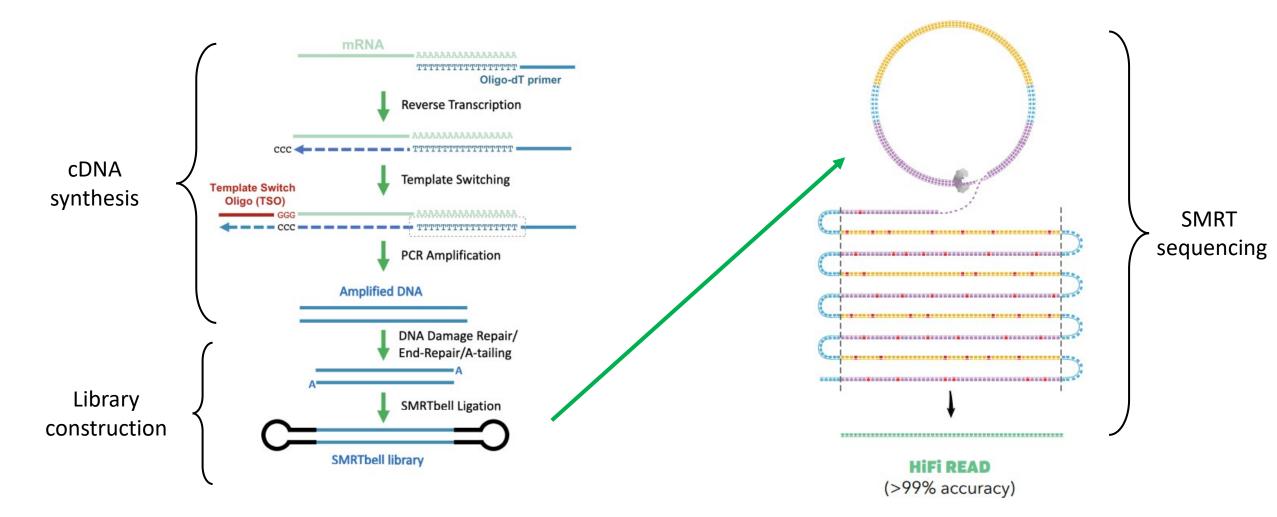
№ 1. Pgibbi_OpsinLW	TAAGAAGATGAATGAATGAGTTCACTGAGATCAAGTGAGTCAGGACATGGCAAAGTGGCAAAGTGGCGCTTATGACTATTGCGTTGTGGTTCTTCGCCTGGACTCCATACCTAGTAATCAATTTCAC
Translation	X K K M N V A S L R S S E S A Q T S A E C K L A K I A L M T I A L W F F A W T P Y L V I N F T
E 2. Pnigroadumbratus_OpsinLW	TAAGAAGATGAATGAATGCGCTCCCTCCGATCAAGCGGGGGGGAACACAGAGGTGCAAACTGGCCAAGATCGCTCTCATGACTATTGCGCTGGTCTTCGCCTGGACTCCATACCTAGTGATCAATTGGAC
Translation	X K K M N V A S L R S S E A T Q T S A E C K L A K I A L M T I A L W F F A W T P Y L V I N W T
P 3. Pmacrosturtensis_OpsinLW Translation	
C 4. Pmesosturtensis_OpsinLW Translation	
C 5. Pmicrosturtensis_OpsinLW	TAAGAAGATGAATGCGGCTTCCCTGCGATCGAGCGAGTCAGCGCCAGACGTCTGCAGAGTGCAAACTAACCAATGCGTCGTGATTCTTCGCCTGGACTCCGTACCTAGTCATTAATTTCGC
Translation	KKMNNAASLRSSESAQTSAACGTCTGCAGAGTCAGAGTGCAAACTAACCAATGCGTCGTGATTCTTCGCCTGGACTCCGTACCTAGTCATTAATTTCGC
C 6. Pplutonicensis_OpsinLW Translation	TAAGAAGATGAATGTAGCTTCCCTGCGATCAAGTGAGTCAGCACAGACGTCTGCAGAGTTCAA-CTAGCCAAAATCGCACTCATGACCATTGCGTTCTTCGCCTGGACTCCATACCTAGTCATTAATTTCAC
7. Pmelrosensis_OpsinLW	TAAGAAGATGAATGTAGCTTCCCTGCCAACTAGTGAGGCAGGACGCCGCAGAGTGCAAGCTGGCCAAGATCGCACTCATGACTATGCACTATGGTTCTTCGCCTGGACTCCATACCTAGTTATCAATTACAC
Translation	* E D E C S F P A N * * G S T D V R R V Q A G Q D R T H D Y C T M V L R L DS I P S Y Q L H
8. Pwedgeensis_OpsinLW Translation	TAAGAAGATGAATGTAGCTTCCCTGCGATCAAGTGAGTCAGCACAGATGTCTGCAGAGTGCAAACTAGCCAAGATCGCGCTCATGACTATTGCGTTGTGGTTCTTCGCCTGGACTACATACCTAGTAATCAATTTCAC

Incorrectly assembled transcripts

• Multicopy gene families

Doxiadis et al 2006 PNAS

- Coverage
 - Incomplete assembly
 - Extreme expression
- Alternative splicing


ACCCATGGTTTCAACATTCGTCTGTAATTCTA	AATAAGAAAGACTTACTCGAAGAAAAAATC
ACCCATGGTTTCAACATTCGTCTGTAATTC	TAAATAAGAAAGACTTACTCGAAGAAAAAATC
ACCCATGGTTTCAACATTCGTCTGTAATTC	TAAATAAGAAAGACTTACTCGAAGAAAAAATC
ACCCATGGTTTCAACATTCGTCTGTAATTC	TAAATAAGAAAGACTTACTCGAAGAAAAAATC
ACCCATGGTTTCAACATTCGTCTGTAATTC	AAATAAGAAAGACTTACTCGAAGAAAAAATC
ACCCATGGTTTCAACATTCG	TTAAATAAGAAAGACTTACTCGAAGAAAAAATC
ACCCATGGTTTCAACATTCGTCTGTAATTC	AAATAAGAAAGACTTACTCGAAGAAAAAATC
ACCCATGGTTTCAACATTC	TTAAATAAGAAAGACTTACTCGAAGAAAAAATC
ACCCATGGTTTCAACATTCGTCTGTAATTCTTT	TTAG GAAAGACTTACTCGAAGAAAAAATC
ACCCATGGTTTCAACATTCGTCTGTAATTC	AAATAAGAAAGACTTACTCGAAGAAAAAATC
A C CAGA T C G G A A G A G C G T C G T G T A G G G A A A G A G	TGTAGATCTCGGTG TCGAAGAAAAAATC
ACCCATGGTTTCAACATTCGTCTGTAATTC	AAATAAGAAAGACTTACTCGAAGAAAAAATC
ACCCATGGTTTCAACATTCGTCTGTAATTC	AAATAAGAAAGACTTACTCGAAGAAAAAATC
ACCCATGGTTTC	AAATAAGAAAGACTTACTCGAAGAAAAAATC
ACCCATGGTTTCAACATTCGTCTGTAATTC	AAATAAGAAAGACTTACTCGAAGAAAAAATC
ACCCATGGTTTCAACATTCGTCTGTAATTC	AAATAAGAAAGACTTACTCGAAGAAAAAATC
ACCCATGGTTTCAACATTCGTCTGTAATTC	AAATAAGAAAGACTTACTCGAAGTAAAAATC
ACCCATGGTTTCAACATTCGTCTGTAATTC	AAATAAGAAAGACTTACTCGAAGAAAAAATC
ACCCATGGTTTCAACATTCGTCTGTAATTC	AAATAAGAAAGACTTACTCGAAGAAAAAATC
GCCCATGGTTTAAGGATTCGTCTATAATTCTTT	ΤΤΤΑΛΑ CAAAAAAGA TA TA CTGGAAGA TA AAA TO
ACCCATGGTTTCAACATTCGTCTGTAATTC	AAATAAGAAAGACTTACTCGAAGAAAAAATC
ACCCATGGTTTCAACATTCGTCTGTAATTC	AAATAAGAAAGACTTACTCGAAGAAAAAATC
ACCCATGGTTTCAACATTCGTCTGTAATTCTTT	TTTAAATAAGAAAGACTTACTCGAAGAAAAAATC

Long read methods

- Alternative splicing
 - 90% genes¹; 30% ncRNA²
- Long read sequencing
 - No assembly required!
- Nanopore RNA sequencing
 Native RNA sequencing
 X Error prone reads
- Iso-Seq (Pacific Biosciences)
 X Native RNA sequencing
 Highly accurate roads
 - Highly accurate reads

lso-Seq

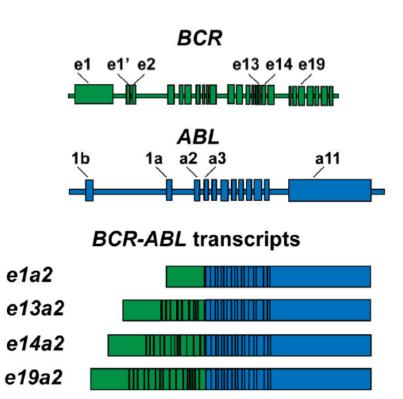
Heat Shock Proteins (HSP70)

MN PKNTVE DAKRELIGRKEDDOK I QEDMKHWPE I VTNDGGKPK I QVEYK GEVKKEAPEE I SSMVESKMKE I SETYLGGKETEAV I TVPAYEND SORQATKDAGVI AGENVERI I NEPTAAALAYGEDKNETGEKNVE I FDEC

MK LC I L LAVVA FVGLS LGE EKKEK DKELGTV I G I DLGTTYSCVGVYKNGRVE I I ANDQGNR I TPSYVAFTADGERL I GDAAKNQLTTN PENTVFDAKR L I GREWSDTNVQHD I K FFP FK VVEKNSKPH I SVDTSQGAKV FAP E E I SAMV LGKKK ETAE AYL GKKKVTHAVVTVP AY FNDAQRQATKDAGV I AGLQVMR I I NEP TAAA I AYGLDKKEGEKNVLVFD MK LC I L LAVVA FVGLS LGE EKKEK DK EL GTV I G I DL GTTYSCVGVYKNGRVE I I ANDOGNR I TPSYVA FTADGERL I GDAAKNOL TTN PENTVFDAKR L I GREWSDTN VQHD I K FFP FK VVEKNSKPH I SVDTSOGAKV FAP E E I SAMV LGKKK ETAE AYL GKKVTHAVVTVP AY FNDAOROA TKDAGV I AGLOVMR I I NEP TAAA I AYGL DKKEGEKNVL VFD MKTALILGLCCFLATSLAKEDKKEKDKEVGTVVGIDLGTTYSCVGVYKNGRVEIIADQGNRITPSYVAFTPDGERLIGDAAKNQLTTNPENTVFDAKRLIGREWSDTTVQHDVKYFPFKVIEKNSKPHISVETSQGHKVFAPEEISAMVLGKKVTHAVVTVPAYFNDAQRQATKDAGTIAGLNVMRI MR I S IVEGLEC LLAC SWAKE DKKEK DK EVGTVVG I DLGTTY SCVGVYKNGRVE I I ANDOGNR I TP S VVA FTPDGERL I GREWSDTTVOHDVK FEP FKV I EKN S KPH I SVETS OGNKV FAP E E I SAMV LGKKK ETAE AY LGKKVTHAVVTVP AY FNDAOROA TKDAGT I AGLNVMR I I INEP TAAA I AY GLDKKDGEKNVL VFDLG MR I STVLGLEC LAC SWAKE DKKEK DKEVGTVVGTDLGTTYSCVGVYKNGRVET I ANDQGNRTTPSVAFTPDGERLTGDAKNQLTTNPENTVEDAKRLTGREWSDTTVQHDVK FEPFKVTEKNSKPHTSVGTVVGTDLGKKVTHAVVTVPAYENDAQRQATKDAGTTAGLNVMRTDGEKNVLVED MR I S IVEGEFCELAC SWAKEDKKEKDKEVGTVVG I DEGTTYSCVGVYKNGRVE I IANDOGNR I TPSYVAFTPDGERE I GDAAKNOLTTN PENTVEDAKRE I GREWSDTTVOHDVK FFP FKV I EKNSKPH I SVETSOGNKV FAP EE I SAMVEGKKVTHAVVTVPAVFNDAOROATKDAGT I AGENVMR I INEPTAAA I AVGE MR I STVLGLFCLLACSWAKEDKKEKDKEVGTVVGTDLGTT------VVAFTPDGERLIGDAAKNQLTTNPENTVFDAKRLIGREWSDTTVQHDVKFFPFKVIEKNSKPHISVETSQGNKVFAPEEISAMVLGKKKTHAVVTVPAYFNDAQRQATKDAGTIAGLNVMRI MR I S IVEGEFCELAC SWAKEDKKEKDKEVGTVVG I DEGTTYSCVGVYKNGRVE I IANDOGNR I TPSYVAFTPDGERE I GDAAKNOLTTN PENTVEDAKEL I GDAAKNOLTN PENT ME I S IVEGLEC LAC SWAKEDKKEK DKEVGTVVG I DLGTTYSCVGVYKNGRVE I IANDQGNR I TPSYVAFTPDGERL I GDAAKNQLTTN PENTVEDAKEL I GREWSDTTVQHDVK FEPEKV I EKNSKPH I SVETSQGNKV FAPEE I SAMVLGKKKETAE AVLGKKVTHAVVTVPAYENDAQQATKDAGT I AGLNVMR I MR I STVLGLFCLLACSWAKEDKKEKDKEVGTVVGTDLGTTYSCVGVYKNGRVETTAAATAYGLDKKRCLTCNPENTVFDARNULGKWKETAEAYLGKKVTHAVVTVPAYFNDAQRQATKDAGTTAGLNVMRT MR I STVLGLFCLLACSWAKEDKKEKDKEVGTVVGTDLGTTYSCVGVYKNGRVETTAAATAYGLDKKDEFFKVTEKNSKPHTSVGAFTDGERLTGREWSDTTVQHDVKFFPFKVTEKNSKPHTSVGAFTDGERLTGREWSDTTVQHDVKFFPFKVTEKNSKPHTSVGAFTDGERLTGREWSDTTVQHDVKFFPFKVTEKNSKPHTSVGAFTDGERLTGREWSDTTVQHDVKFFPFKVTEKNSKPHTSVGAFTDGERLTGREWSDTTVQHDVKFFPFKVTEKNSKPHTSVGAFTDGERLTGREWSDTTVGTGAKNVLVFDGERLTGREWSDTTVQHDVKFFPFKVTEKNSKPHTSVGAFTDGERLTGREWSDTTVGTGAKNVLGKNKFFFKVTEKNSKPHTSVGAFTDGERLTGREWSDTTVGTGAKNVLGKNKFFFKVTEKNSKPHTSVGAFTDGERLTGREWSDTTVGTGAKNVLGKNKFFFKVTEKNSKPHTSVGAFTDGERLTGREWSDTTVGTGAKNVLGKNKFFFKVTEKNSKPHTSVGAFTDGERLTGREWSDTTVGTGAKNVLGKNKFFFKVTEKNSKPHTSVGAFTDGERLTGREWSDTTVGTGAKNVLGKNKFFFKVTEKNSKPHTSVGAFTDGERLTGREWSDTTVGTGAKNVLGKNKFFFKVTEKNSKPHTSVGAFTDGERLTGREWSDTTVGTGAKNVLGKNKFFFKVTEKNSKPHTSVGAFTDGERLTGREWSDTTVGTGAKNVLGKNKFFFKVTEKNSKPHTSVGAFTDGERLTGREWSDTTVGTGAKNVLGKNKFFFKVTEKNSKPHTSVGAFTDGERLTGREWSDTTVGTGAKNVLGKNKFFFKVTEKNSKPHTSVGAFTDGERLTGREWSDTTVGTGAKNVLGKNKFFFKVTEKNSKPHTSVGAFTDGERLTGREWSDTTVGTGAKNVLGKNKFFTFKVTEKNSKPHTSVGAFTDGERLTGREWSDTTVGTGAKNVLGKNKFFTFKVTEKNSKPHTSVGAFTDGERLTGREWSDTTVGTGAKNVLGKNKFFTFKVTEKNSKFFTFKVTEKNSKFFTKGKNVLGKNKFFTKGKNVLGKNKFFTKGKNKFFTKGKNKFTKG ME I SIVE GEFCELAC SWAKEDKKEK DKEVGTVVG I DEGTTYSCVGVYKNGRVE I I ANDQGNR I TPSYVAFTPDGERE I GDAAKNQETTV PAVENDAVK FEPEKV I EKNSKPH I SVETSQGNKV FAPEE I SAMVEGKKKETAE AVEGKKVTHAVVTVPAYENDAQQATKDAGT I AGENVMR I I NEPTAAA I AYGEDKKDGEKNVEVFD MR I S IVEGEFCELAC SWAKE DKKEK DK EVGTVVG I DEGTTY SCVGVYKNGRVE I I ANDOGNR I TPSYVAFTPDGERE I GDAAKNOLTTN PENTVEDAKRE I GREWSDTTVOHDVK FEP FKV I EKN SKPH I SVETSOGNKV FAP E E I SAMVEGKKVTHAVVTVPAYENDAOROATKDAGT I AGENVMR I I NEPTAAA I AYGEDKKDE KOVEVEDEG MR I STVLGLEC LLAC SWAKE DKKEK DK EVGTVVGTDLGTTY SCVGVYKNGRVETTAAA LAYGLDKKDGERLIGDAAKNQLTTN PENTVEDAKRLIGREWSDTTVQHDVK FEP FKVTEKNSKPH I SVETSQGNKV FAP EETSAGNVGTVGTDLGKKK ETAE AYLGKKVTHAVVTVPAYENDAQRQATKDAGTTAGLNVMRT MR I SIVE GEFCELAC SWAKEDKKEKDKEVGTVVG I DEGTTYSCVGVYKNGRVE I I ANDQGNR I TPSYVAFTPDGERE I GDAAKNQETTV PAVENDAVKV FAPE E I SAMVEGKKEKDKEVGTVVG I DEGTTYSCVGVYKNGRVE I I ANDQGNR I TPSYVAFTPDGERE I GDAAKNQETTV PAVENDAVKV FAPE E I SAMVEGKKEKDKEVGTVVG I DEGTTYSCVGVYKNGRVE I I ANDQGNR I TPSYVAFTPDGERE I GDAAKNQETTV PAVENDAVKV FAPE E I SAMVEGKKEKDKEVGTVVG I DEGTTYSCVGVYKNGRVE I I ANDQGNR I TPSYVAFTPDGERE I GDAAKNQETTV PAVENDAVKV FAPE E I SAMVEGKKEKDKEVGTVVG I DEGTTYSCVGVYKNGRVE I I ANDQGNR I TPSYVAFTPDGERE I GDAAKNQETTV PAVENDAVKV FAPE E I SAMVEGKKEKDKEVGTVVG I DEGTTYSCVGVYKNGRVE I I ANDQGNR I TPSYVAFTPDGERE I GDAAKNQETTV PAVENDAVKV FAPE E I SAMVEGKKEKDKEVGTVVG I DEGTTYSCVGVYKNGRVE I I ANDQGNR I TPSYVAFTPDGERE I GDAAKNQETTV PAVENDAVKV FAPE E I SAMVEGKKEKDKEVGTVVG I DEGTTYSCVGVYKNGRVE I I ANDQGNR I TPSYVAFTPDGERE I GDAAKNQETTV PAVENDAVKVTV PAVENDAVKV FAPE E I SAMVEGKKEKDKEVGTVVG I DEGTTYSCVGVYKNGRVE I I ANDQGNR I TPSYVAFTPDGERE I GDAAKNQETTV PAVENDAVKVTV PAVE MR I STVLGLEC LLACSWAKEDKKEKDKEVGTVVGTDLGTTYSCVGVYKNGRVETTAAATAVGLDKKEFDGERLIGDAAKNQLTTNPENTVEDAKRLIGREWSDTTVQHDVKFEPFKVTEKNSKPHTSQGNKVFAPEETSQGNKVFAPETS MR I STVLGLEC LLAC SWAKE DKKEK DK EVGTVVG I DLGTTY SCVGVYKNGRVE I I ANDOGNR I TP SVVA FTPDGERL I GREWSDTTVQHDVK FFP FKV I EKN SKPH I SVETS QGNKV FAP E E I SAMV LGKKK ETAE AYL GKKVTHAVVTVP AYFNDAQROA TKDAGT I AGLNVMR I I INEP TAAA I AYGLDKKDGEKNVL VFDLG MR I S IVLGLECCLACSWAKEDKKEKDKEVGTVVGIDLGTT------VQHDVK FEP FKV1 EKN SKPH1 SVETSQGNKV FAP E E I SAMV LGKMK ETAE AYLGKKVTHAVVTVPAYENDAQRQATKDAGT I AGLNVMR I I NEP TAAA I AYGLDKKDGEKNVLVFD MV LGKMK ETAE AYL GK KVTHAVVTVP AYFNDAOROA TKDAGT I AGL NVMR I I NEP TAAA I AYGL DKKDG EK NVL VFD LG

MV LGKMK ETAE AYL GKKVTHAVVTVPAYENDAQRQATKDAGT I AGLINVMR I I NEP TAAA I AYGLDKKDGEKNVL VED LG

HAVVTVPAYENDAQRQATKDAGT I AGL NVMR I INEP TAAA I AYGLDKKDGEKNVLVEDLG


MMAQRQATKDAGT I AGL NVMR I I NEP TAAA I AYGL DKKDGEKNVL VFD LG

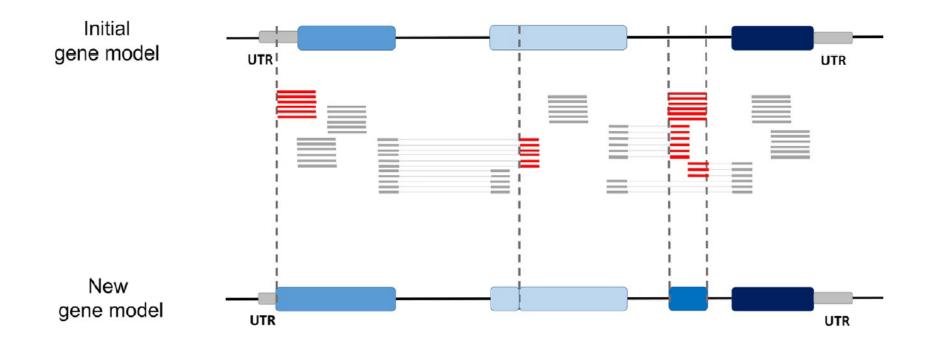
MR I INEPTAAATAYGLDKKDGEKNVLVFDLG

Genome Guided Assembly

• Fusion transcripts

Ę

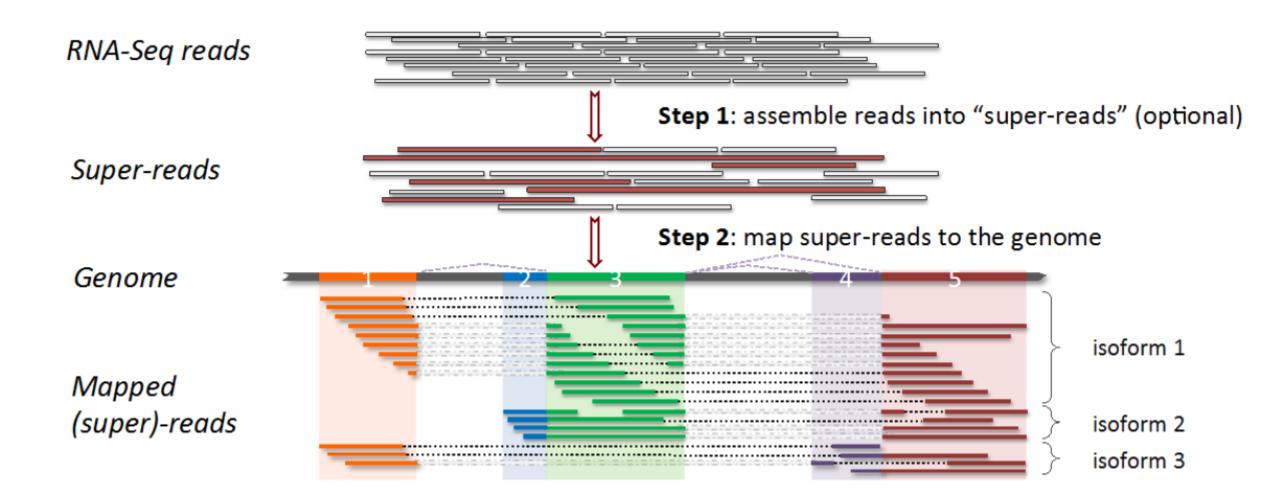
• RNA editing • $A \rightarrow I; C \rightarrow U$

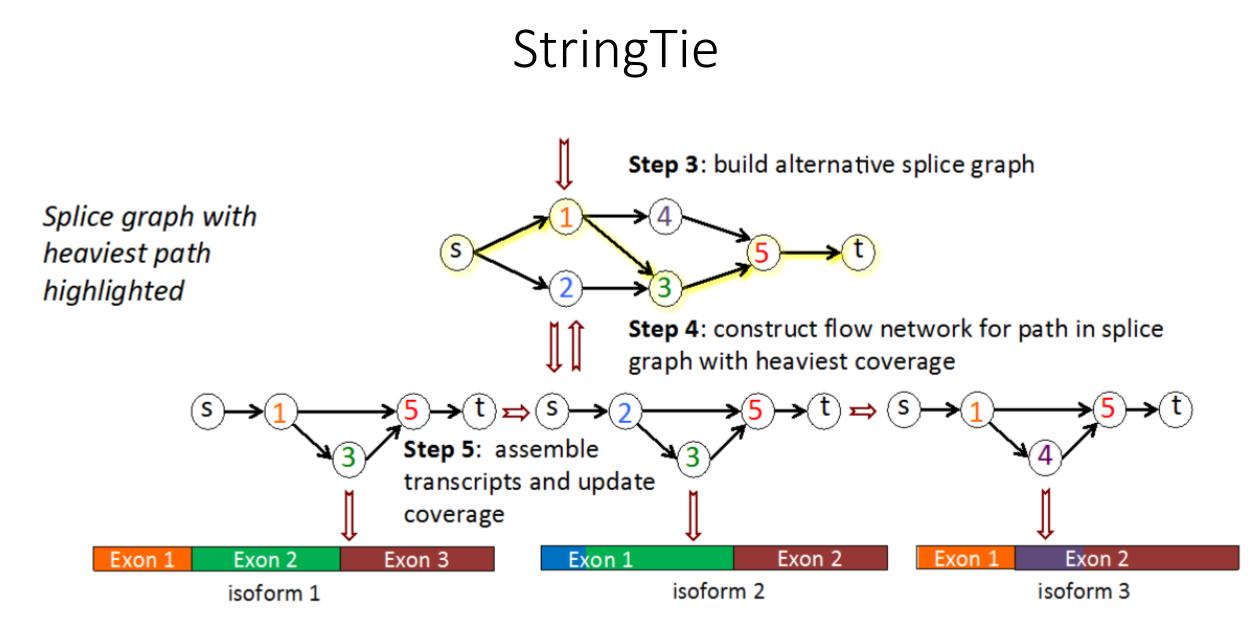

> DNA: CACTGGACG mRNA:GIGACCUGC Protein: G T C

Neckles et al 2109 WIREs RNA

Genome Guided Assembly

• Gene models


Ē


Mcafee 2016 Methods in enzymology

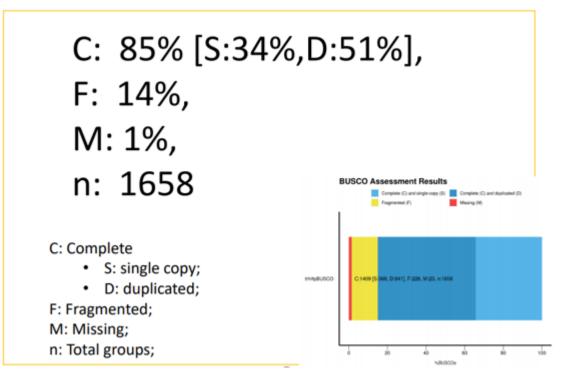
StringTie

Pertea et al 2015 Nature Biotechnology

StringTie

• General Transfer Format (GTF)

seqname source feature start end score strand frame attributes chrX StringTie transcript 281394 303355 1000 + . gene_id "ERR188044.1"; transcript_id "ERR188044.1.1"; reference_id "NM chrX StringTie exon 281394 281684 1000 + . gene_id "ERR188044.1"; transcript_id "ERR188044.1.1"; exon_number "1"; ...


https://asia.ensembl.org/info/website/upload/gff.html

- Can use current annotation (GTF)
- Also calculates coverage for expression analysis
 - Ballgown, DESeq2, edgeR

Transcriptome Evaluation

• Benchmarking of Universal Single Copy Orthologs (BUSCO)

Transcriptome Evaluation

- BLAST to proteome
- Quantify read support

```
76201190 reads; of these:
  76201190 (100.00%) were paired; of these:
    18166307 (23.84%) aligned concordantly 0 times
    17026716 (22.34%) aligned concordantly exactly 1 time
                                                               Properly paired, aligning as expected
    41008167 (53.82%) aligned concordantly >1 times
    _ _ _ _
    18166307 pairs aligned concordantly 0 times; of these:
      1769907 (9.74%) aligned discordantly 1 time
                                                         Properly paired, wrong orientation or distance
    16396400 pairs aligned 0 times concordantly or discordantly; of these:
      32792800 mates make up the pairs; of these:
        15287552 (46.62%) aligned 0 times
        3874965 (11.82%) aligned exactly 1 time
                                                         Unmapped or SE mapping reads
        13630283 (41.56%) aligned >1 times
89.97% overall alignment rate
```

Summary

- Transcriptome assembly is hard!
 - Diverse population of RNA
 - Non-uniform coverage
 - Tissue specificity

Ē

- Multigene families
- Alternative splicing