Overview 0000 Measuring Single Genes

Measuring Multiple Genes

# Lecture 2: Early Transcriptomic Strategies BIOINF3005/7160: Transcriptomics Applications

Dr Stephen Pederson

Bioinformatics Hub, The University of Adelaide

March 16th, 2020



Overview 0000 Measuring Single Genes

Measuring Multiple Genes

#### Overview

Measuring Single Genes

Measuring Multiple Genes



Overview •000 Measuring Single Genes

Measuring Multiple Genes

# Overview



Measuring Multiple Genes

### The Motivation

- The transcriptome is a highly dynamic set of molecules
- Small changes can potentially have significant ramifications
  - e.g. a "Master Regulator" can determine cellular fate
- RNA molecules are small
  - How do we find what's in our sample?
  - How do we quantify RNA?
  - And how do we compare one or more groups?



Overview 0000 Measuring Single Genes

Measuring Multiple Genes

# Technological Developments

- Technological developments are constant
- Technologies are often transient
- Key technologies are:
  - 1. Real Time Polymerase Chain Reaction (RT-PCR)
  - 2. Expressed Sequence Tags (EST)
  - 3. Serial/Cap Analysis of Gene Expression (SAGE/CAGE)
  - 4. Microarray technologies
  - 5. Sequencing technologies
- Analytic methodologies often lag technologies



Measuring Multiple Genes

#### A Simplified History



EST (blue); SAGE / CAGE (yellow); Microarrays (red); RNA Seq (black)<sup>1</sup>



<sup>1</sup>Rohan Lowe et al. "Transcriptomics technologies". In: *PLOS Computational Biology* 13.5 (May 2017), pp. 1–23. DOI: 10.1371/journal.pcbi.1005457. URL: https://doi.org/10.1371/journal.pcbi.1005457.

Overview 0000 Measuring Single Genes

Measuring Multiple Genes

# Measuring Single Genes



Measuring Multiple Genes

#### The Northern Blot

- One of the earliest strategies<sup>2</sup>
- Developed as an extension of the Southern Blot<sup>3</sup> (DNA)
- Gel Electrophoresis-based strategy
  - · Based on size differentiation and probe sequences

<sup>3</sup>E. M. Southern. "Detection of specific sequences among DNA fragments separated by gel electrophoresis". In: J. Mol. Biol. 98.3 (1975), THE UNIVERSITY #ADELAIDE

<sup>&</sup>lt;sup>2</sup>J. C. Alwine, D. J. Kemp, and G. R. Stark. "Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes". In: *Proc. Natl. Acad. Sci. U.S.A.* 74.12 (1977), pp. 5350–5354.

Measuring Multiple Genes

#### The Northern Blot

- RNA is extracted then denatured
- RNA is size separated using Gel Electrophoresis
- RNA is transferred to a "blotting membrane"
- Treat the membrane with a labelled probe
  - Probes are complementary to the "target sequence"
  - Probes are labelled with fluorescent dye or radioactive atoms



Measuring Multiple Genes

#### The Northern Blot



Taken from Ramkumar et al., "Effect of orientation of transcription of a gene in an inverted transferred DNA repeat on transcriptional geneTHE UNIVERSITY silencing in rice transgenics-a case study"

Measuring Multiple Genes

#### The Northern Blot

- Prominent usage before genomes were sequenced
- Can possibly detect different isoforms
- Crude quantitation using Densitometric Analysis
  - What limitations might this have?



Measuring Multiple Genes

### RT-qPCR

- Reverse Transcriptase quantitative PCR
  - Sometimes called: qPCR, RT-PCR
- Often considered to be the "gold standard" for quantitation
- Targets a specific transcribed region via specific primers
  - Primers must be individually designed
  - Primers often span exon-exon junctions



Measuring Multiple Genes

### RT-qPCR

- 1. Reverse Transcriptase converts RNA to cDNA
  - Primers are required: Can target poly-A or random
- 2. Sequence-specific primers amplify the target fragment in cycles
  - Fluorescent dye is commonly incorporated during amplification
- 3. Abundance of target will grow exponentially ( $\times$ 2) for each amplification cycle
- 4. The cycle where abundance reaches the "limit of detection" is estimated  $(C_T)$



Measuring Multiple Genes

# RT-qPCR





Modified from By Lokeshthimmana - Own work; CC BY-SA 4.0; https://commons.wikimedia.org/w/index.php?curid=76313637

Overview 0000 Measuring Single Genes

Measuring Multiple Genes





©Lokesh Thimmana, under the guidance of Dr. G. Mallikarjuna, Assistant Professor, Molecular Biology, Agri Biotech Foundation.



Modified from By Lokeshthimmana - Own work; CC BY-SA 4.0; https://commons.wikimedia.org/w/index.php?curid=76313637

### RT-qPCR





<sup>4</sup>Ma Mingxiao et al. "TaqMan MGB Probe Fluorescence Real-Time Quantitative PCR for Rapid Detection of Chinese Sacbrood Virus". In: MADELAIDE

Measuring Multiple Genes

```
RT-qPCR
```

- Can be used with a standard curve and dilution series to estimate absolute quantity of an RNA *within a sample*
- Can be used to compare across samples for relative abundance



Measuring Multiple Genes

```
RT-qPCR
```

- Can be used with a standard curve and dilution series to estimate absolute quantity of an RNA *within a sample*
- Can be used to compare across samples for relative abundance

What may be a fundamental issue when comparing across samples?



Measuring Multiple Genes

#### Normalisation

- There may be pipetting and other technical differences between samples
  - These are **non-biological** in origin
- To correct for these we can normalise our data
- In RT-qPCR this is often done using "housekeeper" genes
  - We choose genes which *should not* change between samples/groups
  - These are commonly structural genes such as  $ACTN\beta$  or GAPDH



Measuring Multiple Genes

# Estimating Change In Expression

- Relative abundances are often referred to as fold-change (FC)
  - Down regulation is squeezed between 0 and 1
  - Up regulation ranges from 1 to  $\infty$
- We often use log<sub>2</sub> fold-change to get a better scale, e.g.
  - A 2-fold increase in abundance:  $\log_2 2^1 = 1$
  - A 2-fold decrease in abundance:  $\log_2 \frac{1}{2} = \log_2 2^{-1} = -1$
  - No change in abundance  $\log_2 1 = \log_2 2^0 = 0$
- This is often abbreviated as *logFC*



Measuring Multiple Genes

### Estimating Change In Expression

- For RT-qPCR the estimate of logFC is known as  $\Delta\Delta C_T$
- To calculate this, we calculate **two** changes in  $C_T$ 
  - 1.  $\Delta C_T$  relative to the housekeeper(s)
  - 2.  $\Delta\Delta C_T$  across samples for our gene/fragment of interest
- The first step corrects for technical errors
- The second step estimates our true change in abundance



Overview 0000 Measuring Single Genes

Measuring Multiple Genes

### Estimating Change In Expression

Within each sample

$$\Delta C_{T} = C_{t[\text{gene}]} - C_{t[\text{HK}]}$$

Across samples/groups

$$\Delta \Delta C_{\mathcal{T}} = -(\Delta C_{\mathcal{T}[\text{group1}]} - \Delta C_{\mathcal{T}[\text{group2}]})$$

This formulation assumes equal amplification efficiency for all primers/genes (i.e. Efficiency = 2)



Measuring Multiple Genes

# Estimating Change In Expression

- Housekeeper genes must be matched to the "gene of interest" within each sample and within each qPCR reaction
- Choosing > 1 housekeeper gene is advised
- Measurements are often taken in triplicate/quadruplicate for each sample (reactions sometimes fail)

Both Northern blots and RT-qPCR use targeted primers, but in very different ways



Measuring Multiple Genes

# Measuring Multiple Genes



Measuring Multiple Genes

### Expressed Sequence Tags

- The first attempt at capturing the larger transcriptome was via Expressed Sequence Tags<sup>5</sup> (ESTs) in 1991
  - Sequenced 609 mRNA human brain mRNA sequences
  - ESTs were generated by reverse transcribing poly-A selected mRNA, amplified using random primers
  - Used ESTs  $\sim 100-800$ nt
  - Obtained actual sequences using Sanger Sequencing
- >10 years before the Human Genome Project completed
- Just discovering genes was a huge priority



<sup>5</sup>Mark D. Adams et al. "Complementary DNA Sequencing: Expressed Sequence Tags and Human Genome Project". In: Science 252.5013 (1995 UNIVERSITY pp. 1651–1656. ISSN: 00368075, 10959203. URL: http://www.jstor.org/stable/2876333.

Measuring Multiple Genes

#### Expressed Sequence Tags





Source: https://www.khanacademy.org/science/high-school-biology/hs-molecular-genetics/hs-biotechnology/a/dna-sequencing

Measuring Multiple Genes

# Serial Analysis of Gene Expression

Serial Analysis of Gene Expression<sup>6</sup> (SAGE) was the first attempt to quantify expression on a larger scale

- 1. Conversion of mRNA to ds-cDNA using biotinylated primers (often poly-T)
- 2. cDNA is bound to beads using biotin and cleaved
- 3. 11-mer "tags" were produced after cleavage and concatenated
- 4. Sequenced by Sanger Sequencing
- 5. Tags were "de-convoluted" and counted



<sup>&</sup>lt;sup>6</sup>V. E. Velculescu et al. "Serial analysis of gene expression". In: Science 270.5235 (1995), pp. 484-487.

Measuring Multiple Genes

#### Serial Analysis of Gene Expression





Also see: https://www.scq.ubc.ca/wp-content/uploads/2006/07/SAGE3b.gif

Measuring Multiple Genes

# Serial Analysis of Gene Expression

- The word "tag" is still commonly used in some NGS manuals and software
- The term "Digital Gene Expression" arose during this era
  - Is sometimes shortened to DGE, but **does not** stand for *Differential* Gene Expression.
- SAGE doesn't rely on probes targeting known sequences
- Variants on the technique are still used<sup>7</sup>
  - Even used these concatenated tags in early NGS contexts<sup>8</sup>

<sup>&</sup>lt;sup>7</sup>A. M. Zawada et al. "Massive analysis of cDNA Ends (MACE) and miRNA expression profiling identifies proatherogenic pathways in chronic kidney disease". In: *Epigenetics* 9.1 (2014), pp. 161–172.



<sup>&</sup>lt;sup>8</sup>H. Matsumura et al. "SuperSAGE array: the direct use of 26-base-pair transcript tags in oligonucleotide arrays". In: Nat. Methods 3.6 (2000) UNIVERSITY #ADELAIDE

Measuring Multiple Genes

### Cap Analysis of Gene Expression

- A variant technique is Cap Analysis of Gene Expression<sup>9</sup>
- Targets Transcription Start Site (TSS) of mRNA via the 5' cap
  - Specifically for identification of the exact TSS and analysis of promoters
- Original 27nt long, but now only limited by NGS length
- Heavily used in FANTOM (Functional ANnoTation Of the Mammalian genome) project



<sup>&</sup>lt;sup>9</sup>R. Kodzius et al. "CAGE: cap analysis of gene expression". In: Nat. Methods 3.3 (2006), pp. 211–222.

Measuring Multiple Genes

### SAGE Vs CAGE

• Primers which target the poly-A sequence will capture mature mRNA

- mRNA will also be intact (i.e. not degraded)
- CAGE targets transcriptional initiation
  - Transcripts may not be "mature"
  - 5' Cap must be in place (i.e. not degraded)
- Both techniques still involve concatenation of "tags"



Measuring Multiple Genes

#### Microarrays



EST (blue); SAGE / CAGE (yellow); Microarrays (red); RNA Seq (black)<sup>10</sup>



<sup>10</sup>Rohan Lowe et al. "Transcriptomics technologies". In: PLOS Computational Biology 13.5 (May 2017), pp. 1–23. DOI: 10.1371/journal.pcbi.1005457. URL: https://doi.org/10.1371/journal.pcbi.1005457.