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Introduction

Today we’ll

• Discuss the relationship between our experiment and “truth”

• Revise Hypothesis Testing

• Introduce strategies for managing error rates

• Introduce the moderated T -test
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Sampling

Most experiments involve measuring something:

• Continuous values e.g. Ct values, fluorescence intensity
• These values are often Normally distributed

• Discrete values e.g. read counts, number of colonies
• These values often involve rates, i.e. colonies/cm2
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Sampling

• We are always interested in the true underlying values from the entire
population

• We use our sample-derived estimates (i.e. from our data) to make inference
about the true values
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Population Parameters

• Experimentally-obtained values represent an estimate of the true effect
• More formally referred to as population-level parameters

• Every experiment is considered a random sample of the complete population

• Repeated experiments would give a different (but similar) estimate
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Hypothesis Testing

In biological research we often ask:

“Is something happening?” or “Is nothing happening?”

We might be comparing:

• Cell proliferation in response to antibiotics in media

• Methylation levels across genomic regions

• Allele frequencies in two populations

• mRNA abundance in two related cell types
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Hypothesis Testing

In biological research we often ask:

“Is something happening?” or “Is nothing happening?”

How do we decide if our experimental results are “significant”?

• Do our measurements represent normal variability?

• What would the data look like if our experiment had no effect?

• What would our data look like if there was some kind of effect?
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The Null Hypothesis

• The Null Hypothesis (H0) is used to describe the data if nothing is happening

• The Alternate Hypothesis (HA) captures all other possibilities
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The Null Hypothesis

• H0: we have a test value (e.g. µ0 = 0) which allows us to define an expected
distribution
• This test value represents our population statistic of interest (e.g. logFC)

• HA: Values which are unlikely to come from the defined H0 distribution are
assumed to come from HA

• HA is every possibility besides no change =⇒ we can’t define this statistically
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The Sample Mean
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The Sample Mean

For normally distributed data, we usually make inference about a mean of some type:

• We have an experiment-specific estimate of the mean logFC (x̄)

• We make inference about the unknown true mean logFC (µ)

• We use our ‘best guess’ of the value we care about, e.g. µ0 = 0

• In regression models, we fit slope and intercept terms
• Principles introduced below are analogous: We estimate a true value

x̄ ∼ N (µ, SEx̄)

The standard error of x̄ (SEx̄) represents how variable this value is around µ
e.g. SEx̄ = σ√

n
, where σ is population standard deviation
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The Sample Mean

• If we know the population variance (σ2), and have our sample size (n)
• We almost never know σ and never know µ

• We can then use our value of interest, e.g. µ0 = 0
• This is the value that we expect if H0 is true

x̄ ∼ N (µ0,
σ√
n

)
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The Sample Mean

x̄ ∼ N (µ0,
σ√
n

)

x̄ − µ0 ∼ N (0,
σ√
n

)
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The Sample Mean

x̄ ∼ N (µ0,
σ√
n

)

x̄ − µ0 ∼ N (0,
σ√
n

)

Z =
x̄ − µ0

σ√
n

∼ N (0, 1)
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Hypothesis Tests
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The Sample Mean

If we know the population variance (σ2), and have our sample size (n)

Z =
x̄ − µ0

σ√
n

∼ N (0, 1)

• We use this as the underlying principle for H0

• We don’t know µ but we have a value (µ0) of interest (usually µ0 = 0)

So if H0 is true, we know what kind of distribution our data will be drawn from
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P Values

Once we can calculate a Z -score, we compare this to N (0, 1) and ask:

How likely are we to see this Z -score if H0 is true?
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P Values

If we obtain Z = 2
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P Values

• The shaded area is the probability of obtaining Z > 2, assuming H0 is true

• Most of the time we are look for HA : µ0 6= 0 so we need to look on both sides

• This is known as a two-sided test

• Can also be described as |Z | > 2
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P Values

P(|Z | > 2) = 0.0455
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P Values

P(|Z | > 2) = 0.0455

• So if H0 is true, we would see Z > 2 about 4.5 times every 100 experimental
repeats

• We could then choose to accept H0 as the most likely truth, or reject H0 as the
most likely truth
• How do we know if we have one of the 4.5 in 100?

• We don’t know
• Often set p < 0.05 as the rejection value (i.e. α = 0.05)
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P Values

Definition
A p-value is the probability of obtaining data as extreme, or more extreme than we
have, if H0 is true
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Hypothesis Testing

1. We have defined what our data should look like under H0

2. We have determined how likely we are to see our results

3. We accept or reject H0 if p < α
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Hypothesis Testing

In our context

• We are usually comparing µ1 against µ2 =⇒ µ1 − µ2 = 0
• This would be the expression level in two groups/conditions/treatments etc
• µ1 − µ2 = 0 is testing logFC = 0

• We don’t know the population variance (σ)

• We estimate σ using our sample variance =⇒ T -tests
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T-Tests

A T -test is very similar to a Z -test

Z =
x̄ − µ0

σ√
n

∼ N (0, 1)

T =
x̄ − µ0

s√
n

∼ Tν

The value ν means ‘degrees of freedom’
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The Sample Variance

To calculate the sample variance (s2) for a set of values x = (x1, x2, . . . , xn)

x̄ =
1

n

n∑
i=1

xi

s2 =
1

n − 1

n∑
i=1

(xi − x̄)2
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Degrees of Freedom

• The degrees of freedom (ν) describe how ‘fat’ the tails of a T -distribution are
• As ν ↑ the tails become ‘less fat’

• The more individual samples we have (n), the more degrees of freedom we have
• The more samples we have, the less likely we are to see extreme values
• Commonly ν = n − 1
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T-Distributions
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T-Tests

1. We now compare our T statistic to the appropriate T distribution

2. Find the probability (p) of observing data as (or more) extreme if H0 is true

3. Accept or reject H0
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Transcriptomics

• For Microarrays (i.e continuous data) we simply perform a T -test for every gene

• Expression estimates are analysed on the log2 scale

H0 : µ1 − µ2 = 0 Vs HA : µ1 6= µ2

• The expression estimates x̄1 and x̄2 estimate µ1 and µ2
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Transcriptomics

• We will also have a sample variance for each group s1 and s2

• Sample variances are assumed to be equal between groups
• We pool sample variances (sp = . . .)
• ν = n1 + n2 − 2

T =
x̄1 − x̄2

sp

√
1
n1

+ 1
n2
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Transcriptomics

• We often have k > 2 groups =⇒ multiple pairwise comparisons

• Or some kind of regression model with discrete predictors (i.e. group-wise)

s2
p =

∑k
i=1(ni − 1)s2

i∑k
i=1(ni − 1)

In transcriptomics we usually refer to this as the residual variance
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Multiple Testing



Introduction Sampling and the Null Hypothesis The Sample Mean Hypothesis Tests Multiple Testing Moderated T -tests

P Values

• We perform ‘000’s of T -tests in every experiment (one per gene)

• A p-value of 0.05 =⇒ 1 in 20 times we will see data this (or more) extreme if
H0 is true

• A p-value of 0.01 =⇒ 1 in 100 times we will see data this (or more) extreme if
H0 is true
• So if we have 10,000 genes for which H0 is true, how many times will we see:

• p < 0.05
• p < 0.01
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P Values

• We perform ‘000’s of T -tests in every experiment (one per gene)

• A p-value of 0.05 =⇒ 1 in 20 times we will see data this (or more) extreme if
H0 is true

• A p-value of 0.01 =⇒ 1 in 100 times we will see data this (or more) extreme if
H0 is true
• So if we have 10,000 genes for which H0 is true, how many times will we see:

• p < 0.05 =⇒ ∼ 500 times
• p < 0.01 =⇒ ∼ 100 times
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Error Rates

• If we reject H0 using p < 0.05 =⇒ ∼ 500 errors (false rejections)

• If we reject H0 using p < 0.01 =⇒ ∼ 100 errors (false rejections)

These are known as Type I errors

• In biological research, these can waste $$$

• We need to control these errors
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Error Rates

H0 True H0 Not True

Reject H0 Type I Error X

Accept H0 X Type II Error

We need to minimise both Type I and Type II errors
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Error Rates

Two primary strategies for controlling error rates

1. Bonferroni’s Method
• This sets the bar very high to reject H0

• Big increase in Type II errors

2. False Discovery Rate
• Allows a small number of false discoveries
• Reduces Type II errors (compared to Bonferroni)
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Error Rate

The Bonferroni Adjustment

• If you have m = 10, 000 tests and α = 0.05

• Set αbonf = α
m = 0.05

10000 = 5× 10−6

• Alternatively, adjust each p-value: pbonf = min(1,m ∗ p)

The Family-Wise Error Rate (FWER)

• The effect is P(one Type I Error) ≤ 0.05

• This is strict control of the family-wise error rate

• The family is the complete set of m tests
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The False Discovery Rate

• False Discovery Rate strategies are very common in transcriptomics
• We allow a small amount of noise into our results implies signal still swamps noise

• An FDR = 0.05 =⇒ ≤ 5% of our results are ‘false discoveries’ (Type I Errors)

• The most common method is the Benjamini-Hochberg method1

• Other methods include Storey’s q-value2

• These methods do not control the FWER but do control the FDR

1Yoav Benjamini and Yosef Hochberg. “Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing”. In:
Journal of the Royal Statistical Society. Series B (Methodological) 57.1 (1995), pp. 289–300. issn: 00359246. url:
http://www.jstor.org/stable/2346101.

2John D. Storey and Robert Tibshirani. “Statistical significance for genomewide studies”. In: Proceedings of the National Academy of Sciences
100.16 (2003), pp. 9440–9445. issn: 0027-8424. doi: 10.1073/pnas.1530509100. eprint:
https://www.pnas.org/content/100/16/9440.full.pdf. url: https://www.pnas.org/content/100/16/9440.

http://www.jstor.org/stable/2346101
https://doi.org/10.1073/pnas.1530509100
https://www.pnas.org/content/100/16/9440.full.pdf
https://www.pnas.org/content/100/16/9440
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Moderated T -tests
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Moderated T -tests

• When conducting our m simultaneous T -tests, we use an estimate of the
population variance sp

• Some of these are going to be larger than the true population value
• Others are going to be smaller than the true population value

• What impact will this have?
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Moderated T -tests

T =
x̄1 − x̄2

sp

√
1
n1

+ 1
n2

• If sp <<< σ =⇒ T ↑
• We may get significant results with small logFC, due to small variances

• If sp >>> σ =⇒ T ↓
• We will miss truly DE genes due to large variances
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Moderated T -tests

• This situation exists in every T -test

• In transcriptomics, we perform ‘000’s in parallel

• We can take advantage of this =⇒ Empirical Bayes model

• This gives us a moderated value of sp =⇒ Moderated T -test3

3G. K. Smyth. “Linear models and empirical bayes methods for assessing differential expression in microarray experiments”. In: Stat Appl Genet
Mol Biol 3 (2004), Article3.
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Moderated T -tests

• Variances are usually drawn from a Scaled Inverse χ2 distribution

• Given that we have ‘000’s of genes, we can estimate the hyperparameters for a
Bayesian Model

• We end up with a posterior estimate known as the moderated variance
(s̃2

p = E [σ2|s2
p ])

• Overestimates/Underestimates are shrunk towards the mean

• Increases Power (↓ Type II Errors) and Decreases Type I Errors
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