Using Ranked Lists

Lecture 8: Enrichment Testing BIOINF3005/7160: Transcriptomics Applications

Dr Stephen Pederson

Bioinformatics Hub, The University of Adelaide

May 11th, 2020

Using Ranked Lists

Databases

Testing Within DE Genes

Using Ranked Lists

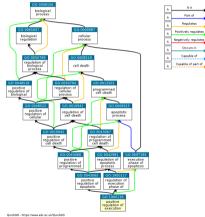
Using Ranked Lists

Databases

Using Ranked Lists

Introduction

- Once we have obtained results from our analysis:
 - How do we summarise the results for hundreds/thousands of genes?
- We look for biological patterns
- How do we even define biological patterns?
- We can use pre-existing databases with defined terms
 - GO, KEGG, Wiki Pathways, MSigDB, JASPAR etc
- We obtain pre-defined gene sets and test for enrichment in our dataset



Using Ranked Lists

- The most commonly used resource for describing biology
 - Also one of the most frustrating
- Has a restricted vocabulary for describing biological features \implies GO Terms
- Multiple classification levels for assigning GO terms to genes
- The basic structure is as a Directed Acyclic Graph (DAG)

Databases

Using Ranked Lists

The Gene Ontology Database

The three Ontologies

1. **Molecular Function**: A molecular function is a process that can be carried out by the action of a single macromolecular machine, via direct physical interactions with other molecular entities

¹Paul D. Thomas. "The Gene Ontology and the Meaning of Biological Function". In: *The Gene Ontology Handbook*. Ed. by Christophe Dessimoz and Nives Škunca. New York, NY: Springer New York, 2017, pp. 15–24. ISBN: 978-1-4939-3743-1. DOI: 10.1007/978-1-4939-3743-1_2. URL: https://doi.org/10.1007/978-1-4939-3743-1_2.

Using Ranked Lists

The Gene Ontology Database

The three Ontologies

- 1. **Molecular Function**: A molecular function is a process that can be carried out by the action of a single macromolecular machine, via direct physical interactions with other molecular entities
- 2. **Cellular Component**: A cellular component is a location, relative to cellular compartments and structures, occupied by a macromolecular machine when it carries out a molecular function

¹Paul D. Thomas. "The Gene Ontology and the Meaning of Biological Function". In: *The Gene Ontology Handbook*. Ed. by Christophe Dessimoz and Nives Škunca. New York, NY: Springer New York, 2017, pp. 15–24. ISBN: 978-1-4939-3743-1. DOI: 10.1007/978-1-4939-3743-1_2. URL: https://doi.org/10.1007/978-1-4939-3743-1_2.

Using Ranked Lists

The Gene Ontology Database

The three Ontologies

- 1. **Molecular Function**: A molecular function is a process that can be carried out by the action of a single macromolecular machine, via direct physical interactions with other molecular entities
- 2. **Cellular Component**: A cellular component is a location, relative to cellular compartments and structures, occupied by a macromolecular machine when it carries out a molecular function
- 3. **Biological Process**: A biological process represents a specific objective that the organism is genetically "programmed" to achieve

All definitions taken from Thomas $(2017)^1$

¹Paul D. Thomas. "The Gene Ontology and the Meaning of Biological Function". In: *The Gene Ontology Handbook*. Ed. by Christophe Dessimoz and Nives Škunca. New York, NY: Springer New York, 2017, pp. 15–24. ISBN: 978-1-4939-3743-1. DOI: 10.1007/978-1-4939-3743-1_2. URL: https://doi.org/10.1007/978-1-4939-3743-1_2.

Using Ranked Lists

- Each GO term belongs exclusively to one Ontology
- Contains an ID, Name, Definition
- Browsing our term from the previous image: https://www.ebi.ac.uk/QuickGO/term/GO:1900119

Using Ranked Lists

- By definition, every term/node in each ontology inherits the properties of the parent node
- Each parent node contains several child terms directly beneath it
 - http://amigo.geneontology.org/amigo/dd_browse

Using Ranked Lists

- By definition, every term/node in each ontology inherits the properties of the parent node
- Each parent node contains several child terms directly beneath it
 - http://amigo.geneontology.org/amigo/dd_browse
- Each child node inherits the properties of it's parent node
- Children can have multiple parents
- Edges connect children to parents

Testing Within DE Genes

Using Ranked Lists

Using Ranked Lists

- Once a term is defined, it can be assigned to a gene/protein
- We need evidence ...
 - Multiple evidence codes are defined
 - Each mapping of gene to term includes the level of evidence
 - http://geneontology.org/docs/guide-go-evidence-codes/

Using Ranked Lists

- Once a term is defined, it can be assigned to a gene/protein
- We need evidence ...
 - Multiple evidence codes are defined
 - Each mapping of gene to term includes the level of evidence
 - http://geneontology.org/docs/guide-go-evidence-codes/
- Evidence is species-specific, but is often mapped across species
- IEA represents the lowest quality
 - In non-model organisms, this might be all we have

Using Ranked Lists

A Few Challenges with GO Annotation

- 1. A set of specific terms are mapped to each gene
 - Parent terms may or may not be
- 2. There is a high level of redundancy
 - GO terms may overlap parent terms significantly
- 3. Visualisation for hundreds of GO terms from our analysis
 - Can we cluster by semantic similarity
 - Can we cluster by common membership (e.g. community detection)
- 4. Terms may also appear quite biologically abstract

Testing Within DE Genes

Using Ranked Lists

GO Visualisations

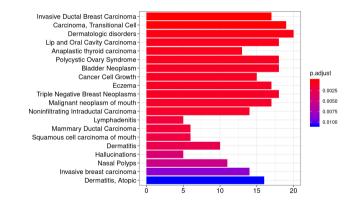


Image taken from clusterProfiler vignette https://yulab-smu.github.io/clusterProfiler-book/chapter12.html

Testing Within DE Genes

Using Ranked Lists

GO Visualisations

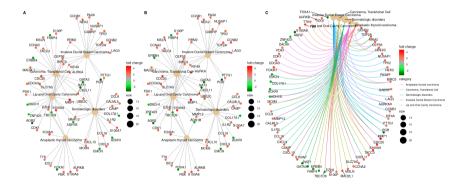


Image taken from clusterProfiler vignette https://yulab-smu.github.io/clusterProfiler-book/chapter12.html

Using Ranked Lists

GO Visualisations

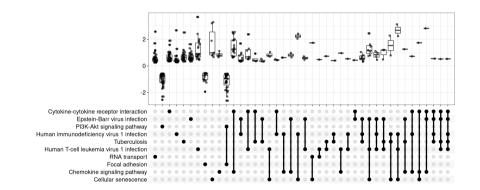


Image taken from clusterProfiler vignette https://yulab-smu.github.io/clusterProfiler-book/chapter12.html

Using Ranked Lists

KEGG Pathways

- The Kyoto Encyclopedia of Genes and Genomes: KEGG
- KEGG Pathways are manually drawn pathway maps representing our knowledge on the molecular interaction, reaction and relation networks for²:
 - 1. Metabolism
 - 2. Genetic Information Processing
 - 3. Environmental Information Processing
 - 4. Cellular Processes
 - 5. Organismal Systems
 - 6. Human Diseases
 - 7. Drug Development

²Taken from https://www.genome.jp/kegg/pathway.html

Using Ranked Lists

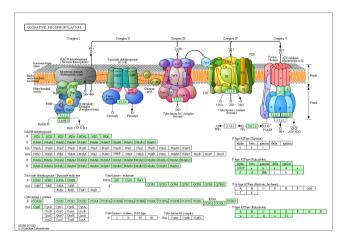
KEGG Pathways

- Each pathway is considered as a discrete unit \implies no inheritance structure
- Pathways may strongly overlap still: https://www.genome.jp/kegg-bin/show_pathway?map01100
- Can search by compounds, genes, pathways

Testing Within DE Genes

Using Ranked Lists

KEGG Pathways



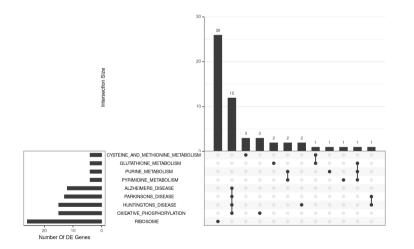


Image downloaded from KEGG

Testing Within DE Genes

Using Ranked Lists

KEGG Pathways

Using Ranked Lists

Wiki Pathways

- Wiki Pathways is maintained by and for the scientific community
- Not dissimilar to a a publicly maintained KEGG
- Currently holds 2862 pathways

Using Ranked Lists

Wiki Pathways

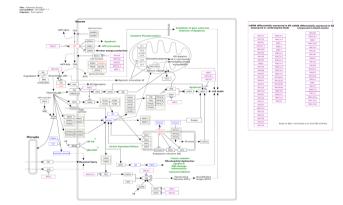


Image taken from https://www.wikipathways.org/index.php/Pathway:WP2059

Using Ranked Lists

The Molecular Signatures Database

- The Molecular Signatures Database (MSigDB) collects other databases
 - H: Hallmark Gene Sets
 - C1: Positional Gene Sets
 - C2: Curated Gene Sets (*BioCarta, KEGG, Reactome*)
 - C3: Regulatory Target Gene Sets (miRNA targets, Transcription Factor targets)
 - C4: Computational Gene Sets
 - C5: GO Gene Sets
 - C6: Oncogenic Gene Sets
 - C7: Immunologic Gene Sets

Using Ranked Lists

The Molecular Signatures Database

- Doesn't use or retain identifiers from original source
- Datasets are supplied as *species-specific* gene sets
- Huge redundancy
- Plays very nicely with R (msigdbr)

Using Ranked Lists

Transcription Factors

- Transcription factors present their own unique problems
- Genomic binding sites allow for significant flexibility

Testing Within DE Genes

Using Ranked Lists

Binding Sites

Using Ranked Lists

Transcription Factors

- Transcription factors present their own unique problems
- Genomic binding sites allow for significant flexibility
- DNA Shape can also play a role in specificity
- There is no 100% match giving a binary Yes/No

Using Ranked Lists

Transcription Factors

- Transcription factors present their own unique problems
- Genomic binding sites allow for significant flexibility
- DNA Shape can also play a role in specificity
- There is no 100% match giving a binary Yes/No
 - How do we define the presence of a motif?
 - How do we know which TF binds the motif?
 - Does only one TF bind a genomic locus?
 - How do we define a promoter & which gene(s) does an enhancer influence?

Using Ranked Lists

Testing Within DE Genes

Using Ranked Lists

Testing Our Data

- The most common test is for enrichment of a *pre-defined gene-set* within an *analytically defined gene-set*
- Our analytically defined geneset could be:
 - DE genes from a two-way comparison
 - Some other group defining a pattern of expression
- Groups can be defined directionally or not
- We usually test for enrichment in comparison to a reference set of genes

Using Ranked Lists

Testing Our Data

- The most common test is Fisher's Exact Test
- Tests H₀: No association between groups
- A common reference set of genes is expressed but not DE genes
- Far better than a random genomic reference
 - e.g. In brain cells we compare DE in brain against expressed in brain but not DE. This avoids finding enrichment for "brain-expressed genes"
- Is often referred to as a *hypergeometric* test

Using Ranked Lists

Testing Our Data

An Example

	DE	notDE
In gene-set	50	50
Not in gene-set	950	15000
Total	1000	15050

Under H_0 we expect $\pi = \frac{50}{15050} = 0.003$ of our DE genes to be in the gene set. (50 + 950) $\times \frac{50}{15050} = 1000 \times \pi = 3.32$ genes. Clearly 50 $\gg 3.32 \implies p < 2X10^{-16}$

Using Ranked Lists

Testing Our Data

- Fisher's Exact Test is two-sided: test is for association
 - $p_{FET} = \frac{\text{the number of more extreme tables}}{\text{the total number of possible tables}}$
- Can return results which are **not** enriched
- Still need to use two-sided test, but can also check the observed > expected
- Implemented in limma as goana() and kegga()

Using Ranked Lists

Testing Our Data

What about bias?

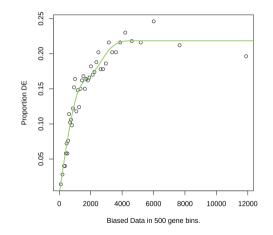
- Gene-length should be roughly constant between samples
- Long genes have higher counts \implies biases DE
- Would this impact our results using Fisher's Exact Test?

³M. D. Young et al. "Gene ontology analysis for RNA-seq: accounting for selection bias". In: Genome Biol. 11.2 (2010), R14.

Using Ranked Lists

Testing Our Data

What about bias?


- Gene-length should be roughly constant between samples
- Long genes have higher counts \implies biases DE
- Would this impact our results using Fisher's Exact Test?
- Wallenius' Non-Central Hypergeometric Distribution allows for sampling with bias
 - Also very applicable if GC content varies across samples/groups
- This incorporation of bias is implemented in goseq³

³M. D. Young et al. "Gene ontology analysis for RNA-seq: accounting for selection bias". In: Genome Biol. 11.2 (2010), R14.

Using Ranked Lists

Testing Our Data

 $Taken from \ \texttt{https://bioconductor.org/packages/release/bioc/vignettes/goseq/inst/doc/goseq.pdf$

Using Ranked Lists

Testing Our Data

In all cases:

- 1. We obtain a set of analytically defined genes (e.g. DE genes)
- 2. We test multiple predefined gene sets (usually 1000s)
- 3. We obtain a list of results with p-values
- 4. We adjust the *p*-values

Using Ranked Lists

Adjusting P-Values

- If there are no DE genes in a GO term (i.e. a gene-set), would we test for enrichment?
 - We could remove these gene-sets from our gene sets to be tested
 - Do we require a minimum number of DE genes in the gene-set to be interested?
- If using GO terms, those near the Ontology root tend to be uninformative
 - Remove terms based on shortest/longest path to root node?
- FDR-adjustment or Bonferroni?
 - Do we care more about Type I or Type II errors
 - Under Bonferroni p < 0.05 is a difficult threshold to cross

Using Ranked Lists

Using Ranked Lists 00000000

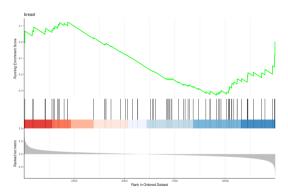
- All of the above looks for enrichment within an analytically-derived gene set
- This focusses on genes with the most significantly altered expression
- Are other biological behaviours worth exploring

Using Ranked Lists 00000000

- All of the above looks for enrichment within an analytically-derived gene set
- This focusses on genes with the most significantly altered expression
- Are other biological behaviours worth exploring
- What if an entire pathway is up-regulated a very small amount?
- We can use ranked lists to test for "enrichment"
 - We can rank on t-statistic, p-value or any appropriate statistic

Using Ranked Lists

- The first approach proposed for this was Gene Set Enrichment Analysis, (GSEA)⁴
- "Takes a walk" down a ranked list and increases the *enrichment score* every time a gene is found from the gene-set
- Find the maximum deviation from zero and considers that the Enrichment Score
- All Enrichment Scores for a gene set are then normalised \implies Normalised Enrichment Score
- The position *up to the maximal ES* is often called the *leading edge*



⁴Aravind Subramanian et al. "Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles". In the UNIVERSITY Proceedings of the National Academy of Sciences 102.43 (2005), pp. 15545–15550. ISSN: 0027-8424. DOI: 10.1073/pnas.0506580102. eprint: #ADELAIDE https://www.pnas.org/content/102/43/15545.full.pdf. UKL: https://www.pnas.org/content/102/43/15545.

Using Ranked Lists

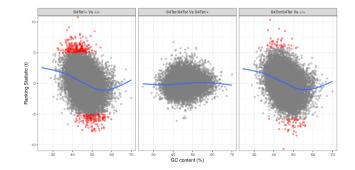
THE UNIVERSITY

Using Ranked Lists

- Here, the walk began at the most *downregulated* gene
- The leading edge would be genes to the right of the maximal ES (below the axis)

Image taken from clusterProfiler vignette https://yulab-smu.github.io/clusterProfiler-book/chapter12.html

Using Ranked Lists


- This approach is independent of any significantly DE genes
- Significance for a gene-set is obtained by comparing the ES to a Null distribution
 - Null distribution is obtained by permutation of samples/genes
- The end result is not dissimilar to the non-parametric Kolgorov-Smirnov test
- However this approach is very sensitive to bias and inter-gene correlations

Using Ranked Lists

Using Ranked Lists

- If GC or length bias shows strong correlation with treatment groups \implies lots of spurious results

Using Ranked Lists

- An alternative is ROAST, which uses rotation testing not permutation
- Inter-gene correlations are *explicitly accommodated*
- A gene-set level *T*-statistic is obtained, with a p-value by Monte-Carlo (rotation)
- A fast version is implemented in limma as fry().
 - No direct equivalent to the leading edge is obtained
 - Crude approximation may be genes with |T| > 2

Using Ranked Lists

- Many alternatives exist
 - Wilcoxon Rank Sum Test, Kolgorov-Smirnov
 - Hypergeomteric testing whilst walking down a list
- The package EGSEA integrates multiple methods
- We want to capture real biology **not** artefacts from bias

- Testing within a set of DE genes against non-DE genes, for enrichment *within* the DE genes
- Testing along a ranked list for enrichment at either end
- Multiple testing applies under both approaches \implies strong biological signals only
- Gene-sets can be literally anything (TFBS, miR targets, KEGG pathway)
 - We can also define our own gene-sets, i.e. 3'UTR with IRE
- Visualisations can be very challenging

