

うくで 1/43

Lecture 6: Alignment & Quantification BIOINF3005/7160: Transcriptomics Applications

Zhipeng Qu

School of Biologial Sciences, The University of Adelaide

April 27th, 2020

Alignment and quantification in RNA-Seq

Outline

- Part 1, RNA-Seq alignment
- Part 2, RNA-Seq quantification

<ロ > < 回 > < 臣 > < 臣 > < 臣 > 至 の へ で 3/43

• Part 3, Pseudoalignment

Part 1, RNA-Seq alignment

・ロト ・ 日 ・ ・ 王 ・ 王 ・ つへで 4/43

Part 1, RNA-Seq alignment

- Short read alignment
- Introduction of STAR aligner

Sequence alignment

GCTGGAAG-GCAT | | | | | GCAGAGCACT

6 matches: 6 × 5 = 30 1 mismatch: -4 1 indel: -7 Total: 19

http://www.csbio.unc.edu/mcmillan/Comp555S16/Lecture14.html

Short read alignment

Also called read mapping, align (map) short reads from NGS to reference genome (if available, DNA-Seq/RNA-Seq) or transcriptome (RNA-Seq).

Challenges in RNA-Seq alignment:

- millions of short reads (DNA-Seq/RNA-Seq)
- RNA splicing

Short read alignment tools (short aligners)

Blue color: DNA aligner; Red color: RNA aligner; Orchid color: Bisulfite Sequencing aligner; Green color: miRNA-Seq aligner

https://www.ebi.ac.uk/~nf/hts_mappers/

Which short aligner should I use?

- Sequencing input type: DNA vs RNA
- Reference sequences: Genome vs Transcriptome
- Available computing resources

STAR aligner

STAR (Spliced Transcripts Alignment to a Reference)

- Outperforms other aligners by more than a factor of 50 in mapping speed
- Memory intensive. At least 10x Genome size (for example, ~30 Gb for human genome)
- Written in C++, only works on Linux or Mac OS
- Unbiased de novo detection of canonical junctions
- Discovers non-canonical splices and fusion transcripts

Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21.

STAR alignment strategy: Seed searching

Search for the longest sequence in read exactly matching the reference genome, called the Maximal Mappable Prefixes (MMPs)

https://hbctraining.github.io/Intro-to-rnaseq-hpc-02/lessons/03_alignment.html

Part 1, RNA-Seq alignment STAR aligner

STAR alignment strategy: Seed searching

 MMPs are sequentially searched and called as "seeds", e.g. seed1, seed2,

• • •

https://hbctraining.github.io/Intro-to-rnaseq-hpc-02/lessons/03_alignment.html

STAR alignment strategy: If STAR does not find an exact matching sequence

The previous MMPs will be extended

https://hbctraining.github.io/Intro-to-rnaseq-hpc-02/lessons/03_alignment.html

STAR alignment strategy: If extension does not give a good alignment

The poor quality or adaptor sequence (or other contaminating sequence) will be soft-clipped

https://hbctraining.github.io/Intro-to-rnaseq-hpc-02/lessons/03_alignment.html

STAR alignment strategy: Clustering, stitching and scoring

The seperate seeds are clustered and then stitched together based on the best scoring of alignment (mismatches, indels, gaps, etc.)

https://hbctraining.github.io/Intro-to-rnaseq-hpc-02/lessons/03_alignment.html

Adjusting alignment parameters of STAR

Some useful parameters:

- --outFilterMultimapNmax
- --outFilterMismatchNmax
- --outFilterMismatchNoverLmax
- --quantMode (GeneCounts)

Important: only adjust parameters when you know what you are doing!!

- Read count
- Multiple mapping
- Normalization of read count

Three read count modes

	union	intersection _strict	intersection _nonempty
gene_A	gene_A	gene_A	gene_A
gene_A	gene_A	no_feature	gene_A
gene_A gene_A	gene_A	no_feature	gene_A
gene_A gene_A	gene_A	gene_A	gene_A
gene_A	gene_A	gene_A	gene_A
gene_A gene_B	ambiguous (both genes with nonunique all)	gene_A	gene_A
gene_A gene_B	(both gene	ambiguous es withnonun	ique all)
gene_A gene_B	align (both gene	ment_not_uniq es withnonun	ue ique all)

https://htseq.readthedocs.io/en/release_0.11.1/count.html

Short reads can be mapped to multiple features (genes/transcripts)

- Identical/similar sequences in different genes (e.g. gene family, repetitive elements)
- Different transcription isoforms from the same gene

Species	Aligner	Read length	multiple mapping rate (%)
Human	STAR	PE100	4.88
Mouse	STAR	PE100	15.72
Rat	STAR	PE75	12.07
Arabidopsis	STAR	PE150	1.41
Rice	Tophat2	PE150	43.7
Soybean	Tophat2	PE150	26.4

Strategies for handling multiple mapping

- Use uniquely mapping reads only
- Simple "rescue" method. Uniformly divide each multi-mapping read to all of the positions it maps to. In other words, a read mapping to 10 positions will count as 10% of a read at each position.
- "Rescue" method using Expectation-Maximization (EM) model
 - E-step (Expectation) Given transcript abundances, estimate the probability of each read mapping to each transcript
 - On-step (Maximization) Update the abundances by redistributing the reads
 - Go to step 1 (E-step) until convergence

"Rescue" method using EM model

$$\begin{split} f_{\rm blue} &= (0.33{+}0.5{+}0.5)/5 = 0.27 \\ f_{\rm green} &= (0.33{+}0.5{+}0.5)/5 = 0.27 \\ f_{\rm red} &= (0.33{+}0.5{+}1{+}0.5)/5 = 0.47 \end{split}$$

Pachter L. Models for transcript quantification from RNA-Seq. arXiv. 2011

"Rescue" method using EM model

$$\begin{split} f_{\rm blue} &= (0.33{+}0.5{+}0.5)/5 = 0.27 \\ f_{\rm green} &= (0.33{+}0.5{+}0.5)/5 = 0.27 \\ f_{\rm red} &= (0.33{+}0.5{+}1{+}0.5)/5 = 0.47 \end{split}$$

$$\begin{split} f_{\rm blue} &= (0.27 + 0.5 + 0.36)/5 = 0.23 \\ f_{\rm green} &= (0.27 + 0.5 + 0.36)/5 = 0.23 \\ f_{\rm red} &= (0.47 + 0.64 + 1 + 0.64)/5 = 0.55 \end{split}$$

Pachter L. Models for transcript quantification from RNA-Seq. arXiv. 2011

"Rescue" method using EM model

$$\begin{split} f_{\rm blue} &= (0.33{+}0.5{+}0.5)/5 = 0.27 \\ f_{\rm green} &= (0.33{+}0.5{+}0.5)/5 = 0.27 \\ f_{\rm red} &= (0.33{+}0.5{+}1{+}0.5)/5 = 0.47 \end{split}$$

$$\begin{split} f_{\rm blue} &= (0.27 + 0.5 + 0.36)/5 = 0.23 \\ f_{\rm green} &= (0.27 + 0.5 + 0.36)/5 = 0.23 \\ f_{\rm red} &= (0.47 + 0.64 + 1 + 0.64)/5 = 0.55 \end{split}$$

...

Pachter L. Models for transcript quantification from RNA-Seq. arXiv. 2011

RNA-Seq is a relative abundance measurement of RNA expression level

- Short reads are RNA fragments randomly picked and sequenced from library
- Additional information, such as levels of "spike-in" transcripts, are required for absolute measurements
- Normalization of read count is needed to compare gene/transcript abundance

◆□ ▶ < @ ▶ < E ▶ < E ▶ 23/43</p>

- RPKM/FPKM (Reads/Fragments Per Kilobase Million)
- Provide a straight of the s

Gene ID	Length	Rep1	Rep2	Rep3
А	2 kb	10	12	30
В	4 kb	20	25	60
С	1 kb	5	8	15
D	10 kb	0	0	1

We assume:

- 1) The genome has 4 genes
- 2) The RNA-Seq dataset has three replicates

https://www.youtube.com/watch?v=TTUrtCY2k-w

Gene ID	Length	Rep1	Rep2	Rep3
А	2 kb	10	12	30
В	4 kb	20	25	60
С	1 kb	5	8	15
D	10 kb	0	0	1

Replicate 3 has much more reads than the other two replicates

https://www.youtube.com/watch?v=TTUrtCY2k-w

Gene ID	Length	Rep1	Rep2	Rep3
A	2 kb	10	12	30
В	4 kb	20	25	60
С	1 kb	5	8	15
D	10 kb	0	0	1

Gene B is twice as long as gene A, which might explain why it always gets twice as many reads

https://www.youtube.com/watch?v=TTUrtCY2k-w

	Gene ID	Length	Rep1	Rep2	Rep3
	A	2 kb	10	12	30
	В	4 kb	20	25	60
	С	1 kb	5	8	15
D		10 kb	0	0	1
"Der Miller"		Total reads:	35	45	106
scaling fa	ctors ──→T	ens of reads:	3.5	4.5	10.6

- In this example, we scale the total read counts by 10 instead of 1,000,000
- Million (1,000,000) was chosen just because it made the numbers look nice (Standard RNA-Seq datasets usually have multiple million reads)

https://www.youtube.com/watch?v=TTUrtCY2k-w

	Gene ID	Length	Rep1	Rep2	Rep3	
	A	2 kb	10	12	30	
	В	4 kb	20	25	60	Count table
	С	1 kb	5	8	15	
	D	10 kb	0	0	1	
"Per Milli scaling fa	on" actors ───►T	Total reads: ens of reads:	35 3.5	45 4.5	106 10.6	
	Gene ID	Length	Rep1	Rep2	Rep3	
	A	2 kb	2.86	2.67	2.83	
	В	4 kb	5.71	5.56	5.66	RPM table
	С	1 kb	1.43	1.78	1.42	
	D	10 kb	0	0	0.09	

Gene ID	Length	Rep1	Rep2	Rep3	
А	2 kb	2.86	2.67	2.83	
В	4 kb	5.71	5.56	5.66	RPM table
С	1 kb	1.43	1.78	1.42	
D	10 kb	0	0	0.09	
	•				

Scale Per Kilobase

Gene ID	Length	Rep1	Rep2	Rep3
А	2 kb	1.43	1.33	1.42
В	4 kb	1.43	1.39	1.42
С	1 kb	1.43	1.78	1.42
D	10 kb	0	0	0.009

RPKM table

RPKM summary

Gene ID	Length	Rep1	Rep2	Rep3	
А	2 kb	10	12	30	
В	4 kb	20	25	60	Co
С	1 kb	5	8	15	
D	10 kb	0	0	1	

Count table

Read count was:

- 1) Normalized for differences in sequencing depth
- 2) Normalized for gene length

Gene ID	Length	Rep1	Rep2	Rep3
А	2 kb	1.43	1.33	1.42
В	4 kb	1.43	1.39	1.42
С	1 kb	1.43	1.78	1.42
D	10 kb	0	0	0.009

RPKM table

TPM

Gene ID	Length	Rep1	Rep2	Rep3			
А	2 kb	10	12	30			
В	4 kb	20	25	60	Cou		
С	1 kb	5	8	15			
D	10 kb	0	0	1			

Count table

Scale Per Kilobase

Gene ID	Length	Rep1	Rep2	Rep3	
А	2 kb	5	6	15	
В	4 kb	5	6.25	15	RPK table
С	1 kb	5	8	15	
D	10 kb	0	0	0.1	

TPM

	Gene ID	Length	Rep1	Rep2	Rep3	
	А	2 kb	5	6	15	
	В	4 kb	5	6.25	15	RPK table
	С	1 kb	5	8	15	
	D	10 kb	0	0	0.1	
		Total reads:	15	20.25	45.1	
"Per Millio scaling fa	on" Ictors	Tens of reads:	1.5	2.025	4.51	

In this example, we scale the total read counts by 10 instead of 1,000,000

https://www.youtube.com/watch?v=TTUrtCY2k-w

TPM

	Gene ID	Length	Rep1	Rep2	Rep3	
	А	2 kb	5	6	15	
	В	4 kb	5	6.25	15	RPK table
	С	1 kb	5	8	15	
	D	10 kb	0	0	0.1	
"Per Milli scaling fa	on" actors ──── ¹	Total reads: ens of reads:	15 1.5	20.25 2.025	45.1 4.51	
	Gene ID	Length	Rep1	Rep2	Rep3	
	А	2 kb	3.33	2.96	3.326	
	В	4 kb	3.33	3.09	3.326	TPM table
	С	1 kb	3.33	3.95	3.326	
	D	10 kb	0	0	0.02	

TPM summary

Gene ID	Length	Rep1	Rep2	Rep3	
А	2 kb	10	12	30	
В	4 kb	20	25	60	Co
С	1 kb	5	8	15	
D	10 kb	0	0	1	

Count table

Read count was:

- 1) Normalized for gene length
- 2) Normalized for differences in sequencing depth

Gene ID	Length	Rep1	Rep2	Rep3	
А	2 kb	3.33	2.96	3.326	
В	4 kb	3.33	3.09	3.326	TF
С	1 kb	3.33	3.09	3.326	
D	10 kb	0	0	0.02	

TPM table

RPKM vs TPM

Gene ID	Length	Rep1	Rep2	Rep3	
А	2 kb	1.43	1.33	1.42	
В	4 kb	1.43	1.39	1.42	RPKN
С	1 kb	1.43	1.78	1.42	
D	10 kb	0	0	0.009	
	RPKM total:	4.29	4.5	4.25	

table

	TPM total:	10	10	10	
Gene ID	Length	Rep1	Rep2	Rep3	
А	2 kb	3.33	2.96	3.326	
В	4 kb	3.33	3.09	3.326	TPN
С	1 kb	3.33	3.09	3.326	
D	10 kb	0	0	0.02	

/ table

RPKM and TPM

- It is generally acceptable to use RPKM and TPM for within-sample transcript expression comparison
- Both RPKM and TPM are NOT suggested to be directly used for cross-sample transcript expression comparison

Zhao S., Ye Z. and Stanton R. Misuse RPKM or TPM normalization when comparing cross samples and sequencing protocols. RNA journal. 2020

- Does not require alignment to a reference genome (super fast)
- Uses gene trascripts (reference transcriptome)
- Quantification at transcript level

Nicolas L Bray, Harold Pimentel, Páll Melsted and Lior Pachter, Near-optimal probabilistic RNA-seg quantification, Nature Biotechnology 34, 525-527 (2016), doi:10.1038/nbt.3519

K-mer

Compare the compatibility of k-mers in short reads and target transcripts

<ロ > < 母 > < 臣 > < 臣 > 臣 の < の 38/43

- Construct a target de-Bruijn graph (t-DBG) from the target transcripts
- Each node is a k-mer in the t-DBG and is associated with a transcript or set of transcripts, named as a k-compatibility class

https://tinyheero.github.io/2015/09/02/pseudoalignments-kallisto.html

Evalute k-mers of short reads for compatibility with the t-DBG

https://tinyheero.github.io/2015/09/02/pseudoalignments-kallisto.html

Find the transcript(s) a read is compatible with based on the k-compatibility class of a read

https://tinyheero.github.io/2015/09/02/pseudoalignments-kallisto.html

- Looks up the k-compatibility class of the node and then "skips" to the node that is after the last node in the same equivalence class
- Intersect the k-compatibility classes on the "non-skipped" nodes

https://tinyheero.github.io/2015/09/02/pseudoalignments-kallisto.html

Thank you!